Math 48A, Exam 2
Lessons 4, 5, 6, 7, and 8

1. IDENTIFY LINEAR FUNCTIONS USING EQUATIONS

Which of the following equations represent linear functions?
a. $3 y=5 x-2$ \qquad linear function \qquad not a linear function
b. $y=x^{2}-7$
___ linear function \qquad not a linear function
c. $y=\frac{2}{x}-5$ \qquad linear function \qquad not a linear function
d. $y^{2}=4 x-7$ \qquad linear function \qquad not a linear function

Below are tables for two different functions. One of these tables has points from a linear function, and the other does not.

x	$f(x)$
-8	2
-4	4
-1	6
1	8
2	10

x	$g(x)$
-6	14
-4	10
-1	4
1	0
2	-2

2A. Which function is linear? Explain your reasoning.

2B. Write an equation for the linear function. Justify your answer.
\qquad
3. EVALUATE FUNCTIONS USING GRAPHS

Below are graphs of functions $f(x)$ and $g(x)$.

Use the graphs above to evaluate each of the following:

$$
f(-1)
$$

Challenge Problems: Use the graphs to evaluate each of the following:

$$
f(g(0))
$$

$$
\mathrm{g}(f(5))
$$

Consider the following absolute value equation:

$$
|2 x-4|-5=1
$$

Solve this equation using an algebraic method (not graphically). Hint: you might check your work by solving problem 5A below and looking back at this problem.
\qquad

5. SOLVE ABSOLUTE VALUE EQUATIONS GRAPHICALLY

5A. Consider the following absolute value equation:

$$
|2 x-4|-5=1
$$

Use the left-hand side (LHS) and right-hand side (RHS) of this equation to a table of values and draw the resulting graph on the axes below. Then, solve this equation using the information in your graph.

x	LHS	RHS
-6		
-5		
-4		
-3		

Name:

-2		
-1		
0		
4		
5		
1		
2		
3		
4		
6		

5B. Redraw your graph from problem 5A in the axes below. Then consider the absolute value inequality:

$$
|2 x-4|-5 \geq 1
$$

Using your graph, identify all x-values that solve this equation.

Name:

\qquad

6. ANALYZE THE GRAPH OF A FUNCTION

Below is a graph of a function $f(x)$.

Use the graph to answer each of the following questions about the function f. For some of your answers you may need to approximate the value. Please give a decimal approximation using your best judgment based on the graph.

6 A. What is $f(-5)$?
6B. What is $f(0)$?

6 C. Find the x values for which $f(x)=0$.

6D. Find the x values for which $f(x) \leq 3$.
6E. Find the x values for which $f(x)>9$

7. ANALYZE THE GRAPH OF A FUNCTION

Below is a graph of a function $k(x)$. Use the graph to answer the questions about the function.

7A. At what point(s) does $k(x)$ have a local maximum?

7B. On what interval(s) is $k(x)$ decreasing.

7C. \quad Find the average rate of change of $k(x)$ from $x=0$ to $x=3$.
8. EVALUATE FUNCTIONS

For all problems below, let $f(x)=x^{2}-x+3$.
8A. Evaluate $f(3)$

8B. Evaluate $f(-5)$

Name:
8C. If $f(x)=x^{2}-x+3$, then evaluate $f(2 a)$

8D. If $f(x)=x^{2}-x+3$, then evaluate $f(a+h)$

The following is a graph of a piecewise defined function $g(x)$. Find the formula (rule) for each part of the function and the x-values for which it applies. Explain your reasoning.

$$
g(x)= \begin{cases}\text { if } \\ & \text { if } \\ & \text { if }\end{cases}
$$

