
The Structure Exploiting Arnoldi Algorithm for Model Order Reduction of General
Higher-Order Linear Dynamical Systems

by

Jeffrey A. Anderson

B.S. Math (University of California, Santa Barbara) 2007

M.A. Math (University of California, Davis) 2010

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Roland Freund, Chair

Professor Thomas Strohmer

Professor Raissa D’Souza

Committee in Charge

2013

-i-



© Jeffrey A. Anderson, 2013. All rights reserved.



To my loving family: past, present and future

-ii-



Contents

Chapter 1. Introduction 1

1.1 The Basic Idea of Reduced-Order Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Moment-Matching Model Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Assumptions on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. Krylov Subspace Methods for Reduced-Order Modeling 10

2.1 Block Krylov Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Krylov Subspace Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The Arnoldi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 The Band Arnoldi Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 The SOAR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Time-Invariant Linear Dynamical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Linearization of Higher-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Krylov Subspace-Based Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3. The SEA Algorithm for Matrices in Case One Form 36

3.1 Exploring Matrices in Case One Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Alternative Proof of the Factorization Result . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Full-Rank Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Exact Deflation and the Column Space of W . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The Generic SEA Algorithm for Matrices in Case One Form . . . . . . . . . . . . . . . . . . . 50

3.3 Optimizing SEA for Higher-Order Linear Dynamical Systems . . . . . . . . . . . . . . . . . . 54

3.3.1 The Stop Condition via the Full-Rank Factorization . . . . . . . . . . . . . . . . . . . 55

-iii-



3.3.2 Optimizing Updates for the Columns of Ân+1. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Generating the X(i) Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.4 Computationally Efficient Single-Input SEA Algorithm . . . . . . . . . . . . . . . . . 59

3.4 The Band SEA Algorithm for Matrices in Case One Form . . . . . . . . . . . . . . . . . . . . . 60

3.5 Applications to Model Order Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4. The SEA Algorithm for Matrices in Case Two Form 74

4.1 Exploring Matrices in Case Two Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Alternative Proof of the Factorization Result . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Full-Rank Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.3 Exact Deflation and the Column Space of W . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 The Generic SEA Algorithm for Matrices in Case Two Form . . . . . . . . . . . . . . . . . . . 86

4.3 Optimizing SEA for First-Order Intego-DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 The Stop Condition via the Full-Rank Factorization . . . . . . . . . . . . . . . . . . . 89

4.3.2 Optimizing Updates for the Columns of Ân+1. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.3 Generating the Matrix X(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.4 Computationally Efficient Single-Input SEA Algorithm . . . . . . . . . . . . . . . . . 92

4.4 The Band SEA Algorithm for Matrices in Case Two Form. . . . . . . . . . . . . . . . . . . . . 93

4.5 Applications to Model Order Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Creating Matrices in Case Two Form from RCL Circuits. . . . . . . . . . . . . . . . 97

4.5.2 Properties of SEA-Based Dimension Reduction of RCL Circuits . . . . . . . . . . 102

4.5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 5. Summary and Future Work 109

Bibliography 111

-iv-



Jeffrey A. Andersson
September 2013

Mathematics

The Structure Exploiting Arnoldi Algorithm for Model Order Reduction of General Higher-Order

Linear Dynamical Systems

Abstract

One possible model reduction technique for large-scale higher-order linear dynamical systems

is to transform a given higher-order system into an equivalent first-order formulation. The desired

reduced-order models are then constructed by employing Krylov subspace-based reduction meth-

ods to the resulting first-order system. Since the Krylov subspaces associated with these first-order

systems can be viewed as multiple copies of the same underlying space, this technique can be im-

proved. This research focuses on creating a Structure Exploiting Arnoldi (SEA) algorithm that

generates an orthonormal basis for the aforementioned multiple-copied subspace. The SEA algo-

rithm is a modification of the Arnoldi algorithm designed to perform updates using key properties

of Krylov subspaces associated with general higher-order linear dynamical systems. Applications

of this research include reduced-order modeling of both ℓth-order linear dynamical systems as well

as systems of first-order integro-differential-algebraic equations.

-v-



Acknowledgments

I thank Roland Freund. I am grateful for his patience throughout my education at UC Davis.

He leads by example using curiosity, intuition and persistence to solve mathematical problems.

Professor Freund continually demonstrates a dedication to high-quality applied mathematics and

encourages his students to develop as independent researchers. He also gave a most precious gift

to me as I entered this field: a fertile problem. I appreciate his research methods and respect the

contributions he has made to the field of Numerical Linear Algebra. Most of all, I have enjoyed

the process of developing research under his guidance.

There are many other mentors I wish to thank. I am grateful to Raissa D’Souza for introducing

me to the research process. Her support and gentle mentorship during my second year at Davis

encouraged me to reach for the best within myself. I thank Thomas Strohmer for being my steward

on multiple occasions and for guiding me in the right directions. I thank Jesus DeLoera for being

a champion for graduate students, for being a staunch supporter of mathematics education and

for being the Chair of my PhD Qualifying Examination. I am grateful to Becca Thomases for her

support and kindness throughout my PhD career. She has an amazing ability to inspire confidence

in those with whom she works. Finally, I thank the many Professors who have encouraged my

progress along the way. These include and are not limited to Naoki Saito, Albert Fannjiang,

Matthias Koeppe, Jon McCammond, Jeffrey Stopple, and Claude Bonnet. Thanks also to the

National Science Foundation for the financial support (NSF Grant No. DMS-0636297) and to the

UC Davis VIGRE committee.

Great thanks are due to the staff members of the UC Davis Mathematics Department including

Tina Denena, Perry Gee, Celia Davis, Alla Savrasova, Zachariah Johnson, Leng Lai, Marianne

Waage and Gladis Lopez. This group of people work tirelessly to support and guide graduate

students like myself through the UC Davis PhD Program in Mathematics and Applied Mathematics.

They have directly contributed to many of my successes at UC Davis. They are the strength behind

the scenes of the UC Davis Mathematics Department.

On a personal note, I thank Lupita Aguilar for all her support. Lupita helps strengthen my

commitment to excellence and my purpose to thrive. She reminds me to slow down and enjoy the

pleasures of life. She is my closest friend and one of my deep motivations to be the best I can be.

-vi-



Thanks to my family for setting the foundation of dedication, persistence, self-confidence and love.

Richard, Darcy, Kevin and Sarah Anderson each helped me summon courage in completing my

PhD journey. These wonderful people remind me of who I am, where I come from and of what I

am capable. Thanks also to Caliope Calomiris Hooper, Benjamin Muniz, Donald Hooper Sr., and

Donald Hooper Jr. Each of these people remind me how special it is to be part of a loving family.

I also thank the entire Aguilar family for accepting me into the group. I feel very lucky to be a

member of the Aguilar tribe.

Last, I thank my friends and colleagues in this program. With their help, I have been able to

stay healthy, happy, and progress far beyond what I could have done alone. In particular, thanks to

James Dowell, Eileen and Josh Harwood, William E. Tavernetti, Adam Sorkin, and Yoshihiro and

Emi Nakahara. I thank my colleagues in the UC Davis Mathematics Department for the countless

lessons taught. Included in this group are Jiawei Zhang, Yuji Nakatsukasa, Joohee Hong, Efrem

Rensi, Owen Lewis, Robert Hildebrand, Jeff Irion, Charles Brummitt, David Renfrew, Mohamed

Omar, Mihaela Ifrim, Rohit Thomas, and Patrick Dragon. I am grateful for everything these

individuals have taught me.

-vii-



CHAPTER 1

Introduction

1.1 The Basic Idea of Reduced-Order Modeling

Complex physical systems are usually dynamic, or changing in time. Powerful mathematical

tools exist to accurately model such real-world phenomena. Linear dynamical systems are a popular

type of model used in a wide variety of science and engineering problems. These are a set of linear

differential-algebraic equations that describe the evolution of a physical or engineered system over

a period of time.

The state-space description of a first-order time-invariant linear dynamical system is given by

(1.1)
E d

dt
x(t) = Ax(t) + Bu(t),

y(t) = Lx(t) +Du(t),

where A, E ∈ RN×N , B ∈ RN×m, L ∈ Rp×N and D ∈ Rp×m. The positive integer N is said to be

the state-space dimension of the linear dynamical system (1.1) and matrices E ,A,B,L, and D are

invariant with respect to time. The time-domain, vector-valued functions x(t),u(t), and y(t) are

of appropriate sizes with t ∈ [t0,∞). This set of equations (1.1) is known as an m-input p-output

time-invariant first-order linear dynamical system.

Numerical simulations of linear dynamical systems lead scientists to understand and even pre-

dict the behavior of the underlying physical process [Dat04]. Response characteristics of the linear

dynamical system under various input conditions are computed using algorithms from numerical

linear algebra [GL96], [ABB+99]. This computational approach to solving scientific problems has

been effective in a wide variety of applications.

However, collections of practical problems result in large-scale linear dynamical systems. Direct

numerical simulation of models with large state-space dimension is expensive in computational costs

and storage requirements. Such systems have so many variables that accurate computations using

1



1.1. THE BASIC IDEA OF REDUCED-ORDER MODELING

the original formulation (1.1) are prohibitive, even on very powerful computers. One popular

remedy to overcome this difficulty is model order reduction [BMS05], [SVDVR08].

The central focus of reduced-order modeling is to create a low-dimensional approximation to

the original system (1.1) in the form

(1.2)
En

d

dt
xn(t) = Anxn(t) + Bnun(t),

yn(t) = Lnxn(t) +Dnun(t),

where all dimensions N are replaced with n ≪ N . Ideally, the model produced by a particular

reduction technique (1.2) should exhibit some combination of the following three desirable qualities:

(1) Accuracy: Accurate reduced-order models very closely approximate the original system.

In particular, valuable reduced-order modeling techniques ensure that the response char-

acteristics yn(t) of the reduced system (1.2) accurately describe the output y(t) of the

large system (1.1). In other words, the relative error

∥y(t)− yn(t)∥2
∥y(t)∥2

is guaranteed to be “small.”

(2) Preservation of important system properties: Properties of linear dynamical systems in-

clude stability and passivity. Stable linear systems exhibit similar output behavior under

a collection of perturbed input data û(t) = u(t) + δz for vectors z ∈ Cm. This property

ensures that engineered systems will behave in a controllable manner even when the exter-

nal environment perturbs input variables in unpredictable but measurable ways. Passive

systems do not generate energy. For physical systems whose corresponding models are

passive or stable, techniques that maintain these properties during dimension reduction

are desirable.

(3) Computational efficiency and stability: Any reduction technique that expedites the numer-

ical simulations of large-scale systems should be computationally efficient and numerically

stable.

2



1.2. MOMENT-MATCHING MODEL ORDER REDUCTION

Real value in model reduction techniques comes from computationally sound methods that run

quickly, produce accurate results and preserve important properties of the underlying system. It is

in this spirit that the results presented in this thesis are developed.

1.2 Moment-Matching Model Order Reduction

As discussed above, the main idea of reduced-order modeling is to replace a given set of linear

differential-algebraic equations (1.1) by a system of the same form with much smaller state-space

dimension (1.2). The challenge is to choose an approximation technique that produces matrices

An, En ∈ Rn×n, Bn ∈ Rn×m, Ln ∈ Rp×n and Dn ∈ Rp×m for the reduced system (1.2) that are

“good” enough to effectively simulate the output characteristics of the original equations (1.1).

One powerful strategy to measure the quality of a reduced-order model relies on the notion of a

transfer function. To form the transfer function corresponding to the state-space description of the

linear dynamical system (1.1), apply the Laplace transform to each time-dependent, vector-valued

function. The Laplace transform of a time-domain, vector-valued function f : [t0,∞) → RN is the

function F (s) defined by

F (s) =

∞∫
t0

f(t)e−stdt,

for some s ∈ C. Assuming zero initial conditions, this translates the collection of differential-

algebraic equations (1.1) into a system of purely algebraic equations given by

(1.3)
sEX(s) = AX(s) + BU(s),

Y (s) = LX(s) +DU(s),

with X(s), U(s) and Y (s) defined by taking the Laplace transform of the functions x(t),u(t) and

y(t) respectively.

Assume that the matrix pencil sE −A is singular for finitely many s ∈ C and solve for X(s) in

terms of U(s). Making the appropriate substitutions, the transfer function H(s) can be stated as

Y (s) = H(s)U(s) where H(s) = D + L(sE − A)−1B.

3



1.2. MOMENT-MATCHING MODEL ORDER REDUCTION

The function H(s) has poles wherever sE − A is singular. Choose a scalar s0 ∈ C such that

(s0E − A)−1 exists and rewrite the transfer function of the original system (1.1) expanded about

the point s0 ∈ C as

H(s) = D + L(I + (s− s0)M)−1R,(1.4)

where

M = (s0E − A)−1E and R = (s0E − A)−1B.(1.5)

A formal Neumann series expansion of (I + (s− s0)M)−1 yields

H(s) = D + L

( ∞∑
k=0

(−1)kMk(s− s0)
k

)
R.(1.6)

Similarly, the Taylor series expansion of H(s) about the point s0 is defined as

H(s) = µ0 + µ1(s− s0) + µ2(s− s0)
2 + · · ·+ µj(s− s0)

j + · · · .(1.7)

The coefficients µi are known as the moments of H about the point s0 for every nonnegative integer

i. In the case of m-input, p-output systems, each µi is a p×m matrix. Explicit formulas for these

moments are given by

µ0 = D + LR, and µk = (−1)kLMkR, for k ∈ N,(1.8)

and arise by comparing the Neumann series expansion (1.6) with the Taylor series expansion (1.7)

of H(s) about the point s0.

A similar argument yields the transfer function Hn(s) for the reduced-order model (1.2)

Hn(s) = Dn + Ln(sEn −An)
−1Bn,(1.9)

= Dn + Ln(I + (s− s0)Mn)
−1Rn,(1.10)

where

Mn = (s0En −An)
−1En and Rn = (s0En −An)

−1Bn.(1.11)

4



1.2. MOMENT-MATCHING MODEL ORDER REDUCTION

Both H(s) and Hn(s) are matrix-valued, rational functions of dimension p×m.

The matrix-valued rational function H : C → (C∪∞)p×m gives an input-output relation of the

original system (1.1) in frequency domain without explicit reference to the state-space variables.

Moment-matching reduced-order modeling techniques aim to approximate this input-output rela-

tion by creating a reduced system (1.2) with transfer function Hn(s) (1.9) matching a significant

number of leading moments of H(s). One popular moment-matching scheme comes by Padé ap-

proximation theory [BGM10]. A Padé model Hn(s) at the expansion point s0 matches a maximum

number of leading moments of the Taylor series expansion of H(s) (1.7). In other words, a Padé

model has the property that

H(s) = Hn(s) +O
(
(s− s0)

q(n)
)

with q(n) maximal.

In the early 1990s, the Asymptotic Waveform Evaluation (AWE) algorithm emerged as a popu-

lar reduced-order modeling technique for applications in VLSI interconnect analysis [PR90]. This

algorithm produced Padé models for transfer functions arising from large-scale time-invariant first-

order linear dynamical systems corresponding to linear RCL circuits with a single input (m = 1)

and a single output (p = 1). By using explicit moment matching, the AWE algorithm and its vari-

ants [RBR92], [RP94], [CN94] enabled engineers designing VLSI circuits to accurately simulate

the IC interconnect network for important problems including clock delay calculations and circuit

noise analysis [HRBR92], [KGP94], [Fri01].

As AWE became a popular tool for IC interconnect analysis it was used to model larger linear

circuits; however increased demands on AWE demonstrated a major draw back. The AWE algo-

rithm and its variants matched moments by explicitly calculating the matrix powers for each µk

(1.8) for 0 ≤ k ≤ 2n − 1, with n being the order of the reduced-model. The particular compu-

tational method of calculating Padé models via explicit moment matching resulted in extremely

ill-conditioned numerical computations. Even though Padé approximants guaranteed strong results

in theory, reduced-order models generated by AWE-inspired algorithms calculated in finite-precision

arithmetic did not match more than a limited number of leading moments.

5



1.2. MOMENT-MATCHING MODEL ORDER REDUCTION

The proliferation of this method and corresponding numerical instability encouraged the next

major wave of innovation in moment-matching reduced-order modeling. In 1995, Feldman and

Freund introduced the Padé Via Lanczos (PVL) algorithm [FF95b] to produce Padé models using

projection onto Krylov subspaces rather than explicit moment matching. By recognizing the con-

nection between Padé approximations [BGM10] and the Lanczos algorithm [Lan50], PVL enjoyed

all the benefits of AWE while addressing some of the major drawbacks. Because PVL-based model

order reduction used Krylov subspace methods, the numerical implementations were both efficient

and numerically stable.

From PVL came a number of variants directly relating to Padé models. For example, the MPVL

algorithm generalized PVL by allowing multi-input, multi-output systems to be analyzed with a

single implementation of this band reduced-order modeling technique [FF95a]. Later, MPVL was

adapted into a band Lanczos algorithm that included look-ahead Lanczos technology [ABFH00].

Similarly, the SyPVL [FF96] and SyMPVL [FF97] algorithms were specialized versions of the

PVL and MPVL algorithms, respectively, for symmetric input data.

While the PVL algorithm and its variants were accurate and numerically stable reduction

techniques, in general they did not preserve important system properties like stability and passivity

of the original dynamical systems. The challenge of creating reduced-order modeling techniques

that reliably preserved system properties spurred a third wave of innovation in moment-matching

reduced-order modeling during the late 1990s and early 2000s. Krylov subspace-based methods

like PRIMA [OCP97] and ENOR [She99] arose to produce Padé-type models that were provably

passive.

Padé-type models of state-space dimension n are similar to Padé models except they match a

fewer number of of leading moments of the Taylor series expansion (1.7). A Padé-type model at

the expansion point s0 of the original system (1.1) is a reduced-order model (1.2) of state-space

dimension n, with transfer function Hn(s) (1.9), that matches a number of leading moments of

H(s). Specifically, a Padé-type model satisfies

H(s) = Hn(s) +O
(
(s− s0)

q′
)

(1.12)

with 1 ≤ q′ ≤ q(n), where q(n) is the best possible approximation available by Padé models.

6



1.3. ASSUMPTIONS ON NOTATION

Although the PRIMA algorithm was the first popular method for creating provably passive

reduced-order models, it ignored inherent structure in the matrices defining the state-space equa-

tions (1.1). Recognizing this oversight, Freund introduced the SPRIM algorithms [Fre04], [Fre11]

as reduction techniques designed to handle the special structure of system matrices. By incor-

porating a mechanism to exploit the structure of J-Hermitian systems [Fre08], SPRIM boasted

twice the accuracy of PRIMA for the same computational cost. Moreover, SPRIM maintained the

underlying system properties in ways that PRIMA and its variants did not.

This thesis carries on where SPRIM left off. The goal of this research is to produce a theoret-

ically more general and computationally more efficient version of the SPRIM algorithm for model

order reduction applied to general higher-order linear dynamical systems. The improvements sug-

gested in this thesis rely on special structure of Krylov subspaces associated with linearized higher-

order linear dynamical systems. By exploiting such structure, this thesis presents computationally

efficient model order reduction algorithms to generate Padé-type models that preserve the structure

of the original system equations.

1.3 Assumptions on Notation

The mathematical results presented in this thesis follow the standard notation for numerical

linear algebra and matrix computations [GL96]. The set of complex numbers is denoted by C

while the set of real numbers is given by R. Similarly, the collection of all n × m matrices with

complex entries is denoted as Cn×m while the set of all real n×m matrices is given by Rn×m. For

A, E ∈ Cn×n and s ∈ C, the matrix pencil sE − A is said to be regular if the matrix sE − A is

singular only for finitely many values s ∈ C [GLR09, Part II].

The transpose of an n × m matrix A = [ajk] is denoted as AT = [akj ] ∈ Cm×n. Similarly,

the conjugate transpose is given by AH = [akj ]. The individual entries of an n ×m matrix A are

complex numbers

A(i, j) = aij , for i = 1, 2, ...., n and j = 1, ...,m.

7



1.3. ASSUMPTIONS ON NOTATION

The ith row of the matrix A is a 1×m vector denoted using the colon notation

A(i, :) =
[
ai1 ai2 · · · aim

]
, for i = 1, 2, ..., n.

The jth column of A is an n× 1 vector given by

A(:, j) =


a1j
...

anj

 , for j = 1, 2, ...,m.

Boldface variables, such as x, denote vectors whose size will be explicitly stated if it is not im-

mediately clear from context. When referring to a sequence of vectors, subscripts denote individual

sequence elements {qi}ni=1 where qi is the ith element in this sequence for i = 1, 2, ..., n. The span

of a set of k vectors x1, ...,xk is given by

span {x1, ...,xk} = ⟨x1, ...,xk⟩ .

Matrices in math calligraphy such as M and R will be used to describe data arising in ap-

plications related to reduced-order modeling. Capital romanized letters such as F, S and X will

be used to denote matrices whose sizes will be stated if not clear from the context. Given a ma-

trix A ∈ Cn×m and a vector v ∈ Ck whose k ≤ m entries are strictly increasing integers with

1 ≤ v1 < · · · < vk ≤ m, A(:,v) is the matrix of columns of A whose indices are pointed to by the

entires of v, i.e.

A(:,v) =
[
A(:, v1) A(:, v2) · · · A(:, vk)

]
.

The class of matrices discussed in Chapter 3 will be defined using the Kronecker product

[Gra81]. Given A ∈ Cn×m and B ∈ Cp×q, the Kronecker product of A and B is the matrix

A⊗B = [ajkB] ∈ C(n·p)×(m·q).

Chapter 4 includes an important reference to symmetric positive semi-definite matrices. The no-

tation E ⪰ 0 means that square matrix E is symmetric positive semi-definite. The matrix In will

8



1.4. THESIS OUTLINE

denote the n×n identity matrix and the zero matrix will be denoted by 0 with dimensions apparent

from the context.

1.4 Thesis Outline

The first chapter of this thesis introduces moment-matching reduced-order modeling and gives

an overview of the state-of-the-art. Chapter 2 provides the background material and appropriate

references for this research including a brief introduction to block Krylov subspaces, the lineariza-

tion of higher-order linear dynamical systems into first-order form, and pertinent Krylov subspace

methods for model order reduction. The main contributions of this thesis are found in Chapter 3

and Chapter 4. Chapter 3 presents the Structure Exploiting Arnoldi (SEA) algorithm for input

matrices arising from the linearization of ℓth-order linear dynamical systems for ℓ ≥ 2. Both single-

input and band versions of the SEA algorithm are included as well as a discussion of computational

aspects of the implementations of these algorithms. Chapter 4 develops an analogous Structure

Exploiting Arnoldi algorithm applied to matrices arising from the linearization of special second-

order systems known as first-order integro-differential-algebraic equations. Chapter 5 concludes

with a summary of the work presented and a discussion of further research problems related to this

project.

9



CHAPTER 2

Krylov Subspace Methods for Reduced-Order Modeling

Many popular methods for executing moment-matching reduced-order modeling rely on Krylov

subspace-based projections. Important background material on block Krylov subspaces, first-order

and higher-order linear dynamical systems, and moment-matching dimension reduction are included

in this chapter. Each of these concepts is directly related to the development of the Structure

Exploiting Arnoldi algorithm.

2.1 Block Krylov Subspaces

Krylov subspace-based reduction techniques are based on Krylov subspaces [Saa03, Chapter

6], [Fre05], [Hog06, Chapter 49]. This section presents a brief overview of block Krylov subspaces

induced by a matrix M ∈ CN×N and starting vectors R ∈ CN×m. All relevant definitions and

results for Krylov subspaces follow from the more general theory presented below by setting m = 1.

Definition 2.1.1. Let M ∈ CN×N and let R ∈ CN×m. The N × mN block Krylov matrix

induced by M and R is defined by

KN (M,R) =
[
R MR · · · MN−1R

]
.(2.1)

The N × mN block Krylov matrix KN (M,R) will not have linearly independent columns in

general.

Proposition 2.1.2. Let M ∈ CN×N and let ri denote the ith column of R ∈ CN×m for each

i ∈ {1, 2, ...,m}. Starting at the leftmost column vector of KN (M,R) and moving to the right,

index each column vector using integers 1, 2, ..., Nm. If column (n− 1)m+ i, given by Mn−1ri, is

in the span of the first (n− 1)m+ i− 1 columns, then all columns Mkri are also in the same span

for n ≤ k ≤ N − 1,.

10



2.1. BLOCK KRYLOV SUBSPACES

Since the columns of the block Krylov matrix (2.1) will not be linearly independent in general,

there is a smallest k0 such that the blockMk0−1R contains a new basis vector for the column span of

KN (M,R) and all columns ofMkR are linearly dependent on columns of
[
R MR · · · Mk0−1R

]
.

for k0 ≤ k ≤ N − 1.

Definition 2.1.3. Let M ∈ CN×N and R ∈ CN×m. The block grade of the block Krylov

subspace induced by M and R is the smallest natural number k0 such that

range
([

R MR · · · Mk0−1R
])

= range (KN (M,R)) .(2.2)

Block Krylov subspaces induced by a matrix M and a starting block R are defined using

linearly independent columns of KN (M,R). To this end, scan the columns of the block Krylov

matrix starting from the leftmost column and moving to the right, deleting each column that is

linearly dependent on previous columns. The process of eliminating linearly dependent columns

is known as exact deflation and provides a concise framework to describe the essential spanning

information for block Krylov matrices.

Definition 2.1.4. The deflated block Krylov matrix induced by M and R is

[
R1 MR2 · · · Mk0−1Rk0

]
(2.3)

where k0 is the block grade of the block Krylov subspace induced by M and R. Set R0 = R. For

each j = 1, ..., k0, Rj ∈ CN×mj is a submatrix of Rj−1 ∈ CN×mj−1 . Moreover, Rj ̸= Rj−1 if, and

only if, exact deflation is necessary in the jth Krylov block Mj−1Rj−1. In particular Rj = Rj−1Ej

with Ej ∈ Cmj−1×mj and mj ≤ mj−1 for j = 1, 2, ..., k0. Ej is the deflated identity matrix obtained

by deleting the mj−1 − mj columns of Imj−1 corresponding to columns of Mj−1Rj−1 that can

be written as linear combinations of basis vectors in previous blocks of the deflated block Krylov

matrix.

The sequence of dimensions {mj}k0j=1 encodes the number of linearly independent columns of

KN (M,R) provided by each block Mj−1R for j = 1, 2, ..., k0. Notice that

m ≥ m1 ≥ m2 ≥ · · · ≥ mk0 ≥ 1.

11



2.1. BLOCK KRYLOV SUBSPACES

Let N0 be the number of columns of the deflated block Krylov matrix (2.3) and define the function

n : {1, 2, ...., k0} → N as

n = n(k) = nk = m1 +m2 + · · ·+mk(2.4)

for k = 1, 2, ..., k0. From above, n(k0) = N0 = m1 +m2 + · · · +mk0 ≤ N . The difference between

the block Krylov matrix and the deflated block Krylov matrix is best illustrated with an example

including nontrivial exact deflation patterns.

Example 2.1.5. Let M ∈ C15×15 be a random matrix and let m = 5. Suppose r1, r3 ∈ C15 are

random vectors. Initialize the three other starting vectors as follows

r2 = r1, r4 = M2r1, r5 = M3r1.

Because there are five starting vectors in the first block, subsequent blocks of KN (M,R) also have

five columns. The initial assumptions on the starting block R guarantee that exact deflation occurs

in each of the first three blocks of the block Krylov matrix (2.1). A visual representation of the

first four blocks of the block Krylov matrix (2.1) is helpful in identifying exact deflation:

R1 R2 R3 R4 R5

( )

MR1 MR2 MR3 MR4 MR5




M2R1 M2R2 M2R3 M2R4 M2R5




M3R1 M3R2 M3R3 M3R4 M3R5


 .

The color coding indicates the exact deflation pattern necessary to produce the deflated block

Krylov matrix (2.3) associated with this starting data. Red highlighting identifies the first instance

for which the columns of the block Krylov matrix KN (M,R) associated with each ri require exact

12



2.1. BLOCK KRYLOV SUBSPACES

deflation. The blue highlighting marks vectors that are linearly dependent on previous columns

based on Proposition 2.1.2.

Using this visual, it is possible to pick out the linearly independent vectors in the first four

blocks and generate the corresponding columns of the deflated block Krylov matrix:

[
r1 r3 r4 r5 Mr1 Mr3 Mr5 M2r3 M2r5 M3r3 M3r5

]
The elimination matrices used to create the first four blocks of the deflated block Krylov matrix

are

E1 =



1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, E2 =


1 0 0

0 1 0

0 0 0

0 0 1


, E3 =


0 0

1 0

0 1

 , E4 =

1 0

0 1

 .

In this case, m = 5,m1 = 4,m2 = 3,m3 = 2 = m4 = · · · = mk0 and k0 = 6. For a general random

matrix, N0 = 15.

Definition 2.1.6. Let M ∈ CN×N and R ∈ CN×m. For 1 ≤ n ≤ N0, the nth block Krylov

subspace induced by M and R, denoted as K(M,R, n), is the n−dimensional subspace of CN

spanned by the first n columns of the deflated block Krylov matrix (2.3).

Practical algorithms designed to construct basis matrices for K(M,R, N0) execute in finite-

precision arithmetic and will not, in general, be able to determine exact deflation. Instead, these

numerical methods proceed by deleting vectors that are “almost” linearly dependent on previous

vectors, a process known as inexact deflation. Theoretic results, in contrast, are most easily stated

assuming exact deflation. Unless explicitly stated otherwise, all results involving block Krylov

subspaces presented in this thesis are formulated assuming exact deflation only.

Block Krylov subspaces provide the theoretic foundations for multiple-input, multiple-output,

moment-matching reduced-order modeling techniques. Many of these projection-based methods

generate basis vectors for the block Krylov subspace induced by M and R onto which key system

13



2.1. BLOCK KRYLOV SUBSPACES

matrices are projected. Bases for K(M,R, N0) are useful for a number of reasons and deserve

special attention.

Definition 2.1.7. Let M ∈ CN×N and R ∈ CN×m. A matrix

V =
[
v1 v2 · · · vN0

]
∈ CN×N0

is a basis matrix of the block Krylov subspaces induced by M and R if

K(M,R, n) = range
([

v1 v2 · · · vn

])
for all n = 1, 2, ..., N0.

Basis matrices are powerful because they relate the theory of block Krylov subspaces to the

computational aspects of basis generation.

Proposition 2.1.8. Let V be any basis matrix of the block Krylov subspaces induced by M and

R. Then, there exists a nonsingular, upper-triangular matrix U such that

V =
[
R1 MR2 · · · Mk0−1Rk0

]
U .

Another nice property of basis matrices is that any two basis matrices for the same block Krylov

subspaces are related by a nonsingular, upper-triangular matrix.

Proposition 2.1.9. For any two basis matrices V1 and V2 of K(M,R, N0), there exists a nonsin-

gular, upper-triangular matrix U such that V1 = V2 U .

In the case that matrix R contains a single starting vector (m = 1), Hessenberg matrices can

be used to identify basis matrices for Krylov subspaces induced by M and R.

Proposition 2.1.10. Let M be an arbitrary N × N matrix. Let Ân+1 =
[
Ân ân+1

]
be an

N × (n + 1) rectangular matrix satisfying MÂn = Ân+1Ĥn for an (n + 1) × n Hessenberg matrix

Ĥn. Then there is an upper-triangular matrix Un such that

Ân Un =
[
â1 Mâ1 · · · Mn−1â1

]
.

Furthermore, if the first n−1 subdiagonal elements of Ĥn are nonzero, the upper-triangular matrix

Un is nonsingular and the range (Ân) = K(M, â1, n).

14



2.1. BLOCK KRYLOV SUBSPACES

A nice proof for this proposition can be found in Bai’s SOAR paper [BS05b].

For general R ∈ CN×m, a band Hessenberg matrix H̃nk
can be used to identify basis matrices

for K(M,R, N0). The subdiagonal bandwidth structure of H̃nk
relates to the exact deflation

pattern for KN (M,R). Brute-force exact deflation requires a scan of each and every column of the

N ×mN block Krylov matrix induced by M and R. However, an improved method for discovering

the exact deflation pattern in the (k+1)st blockMkR relies on the elimination matrices {Ej}kj=1 for

k = 1, 2, ..., k0 − 1. Begin this method by constructing the elimination matrix E1 guaranteeing the

proper exact deflation pattern for starting block R. Assuming the elimination matrices E1, ..., Ek

are known for some k = 1, 2, ..., k0 − 1, the (k + 1)st elimination matrix can be determined by

scanning the last mk columns of

[
R1 MR2 · · · Mk−1Rk MkRk

]
and identifying the columns of MkRk that are linearly dependent on previous columns.

Let n(k) = nk = m1 +m2 + · · ·mk for k = 1, 2, ..., k0. For k = 1, 2, ..., k0 − 1, the subdiagonal

bandwidth structure of band Hessenberg matrix H̃nk
∈ Cnk+1×nk relates to this alternative method

for detecting the exact deflation pattern of the matrix KN (M,R). In particular, partition the band

Hessenberg matrix H̃nk
into subblocks

H̃nk
=



H̃11 H̃12 · · · H̃1k

H̃21 H̃22 · · · H̃2k

0 H̃32
. . .

...
...

. . .
. . . H̃kk

0 · · · 0 H̃k+1,k


,

where H̃ij ∈ Cmi×mj for i = 1, 2, ...., k + 1 and j = 1, 2, ..., k. If mj+1 = mj , the subblock H̃j+1,j

is an upper-triangular, nonsingular matrix. On the other hand, if exact deflation occurs in the

(j +1)st block, then mj+1 < mj and the matrix H̃j+1,j ∈ Cmj+1×mj is a rectangular matrix in row

echelon form with exactly mj+1 nonzero pivots. In this case, the ith pivot of H̃j+1,j has the same

column index as the ith nonzero column of ET
j+1 for i = 1, ...,mj+1. The matrix H̃nk

is said to be

15



2.1. BLOCK KRYLOV SUBSPACES

a deflation-revealing Hessenberg matrix corresponding to the block Krylov subspaces induced by

M and starting block R.

Proposition 2.1.11. Let M ∈ CN×N and R ∈ CN×m. Let k0 be the block grade of the block

Krylov subspace induced by M and R and let {Ej}k0j=1 be the sequence of elimination matrices

that indicate the proper exact deflation pattern for KN (M,R). Let

nk = m1 +m2 + · · ·+mk

for k = 1, 2, ..., k0. Suppose that RE1 = Â1U11 for an m1 ×m1 nonsingular, upper-triangular U11

and let Vnk
∈ CN×nk be a rectangular matrix such that

Vnk
=
[
Â1 Â2 · · · Âk

]
where k = 1, 2, ..., k0 and Âj ∈ CN×mj for j = 1, 2, ..., k0. If

MVnk
= Vnk+1

H̃nk

for a (nk+1 × nk) deflation-revealing Hessenberg matrix H̃nk
corresponding to the block Krylov

subspaces induced by M and starting block R, then there is an nk × nk upper-triangular matrix

Unk
such that

Vnk
=
[
R1 MR2 · · · Mk−1Rk

]
Unk

.

for k = 1, 2, ..., k0 − 1. Furthermore, because the m2 +m3 + · · ·+mk+1 subdiagonal pivots of H̃nk

are nonzero, the matrix Unk
is nonsingular and

range (Vnk
) = K(M,R, nk).

Proof: This result is established by induction. The base case is k = 2 since Vn1U11 = R1 by

assumption. Notice that

[
R1 MR2

]
=
[
Â1U11 MR1E2

]
=

 Â1U11

[
Â1 Â2

]H̃11

H̃21

U11E2



16



2.2. KRYLOV SUBSPACE METHODS

Set U12 = H̃11U11E2 ∈ Cm1×m2 and U22 = H̃21U11E2 ∈ Cm2×m2 . Matrix U22 is upper-triangular

and nonsingular because H̃21U11 is in row echelon form and the linearly dependent columns of this

matrix-matrix product are eliminated by multiplication with E2. Thus

[
R1 MR2

]
=
[
Â1 Â2

]U11 U12

0 U22


and the base case is established. Assume that the relationship hold for k − 1. If

EBpk
=



E2 0 · · · 0

0 E3
. . .

...
...

. . .
. . . 0

0 · · · 0 Ek


,

then

[
R1 MR2 · · · Mk−1Rk

]
=

[
Â1U11 M

[
R1 MR2 · · · Mk−2Rk−1

]
EBpk

]
,

=
[
Â1U11 MVnk−1

Unk−1
EBpk

]
,

= Vnk

 U11
H̃nk−1

Unk−1
EBpk

0

 = Vnk
Unk

.

The matrix Unk
∈ Cnk×nk is upper-triangular by the definition of the sparsity pattern of H̃nk−1

combined with the structure of the matrix EBpk
. □

2.2 Krylov Subspace Methods

The typical basis used to establish the theory of block Krylov subspaces is defined using block

matrices Mi−1R for i = 1, 2, ..., k0 and is numerically ill-conditioned. In contrast, a number of

numerically stable techniques exist to create basis matrices for the nth block Krylov subspace

induced by a matrix M ∈ CN×N and a starting block R ∈ CN×m. Detailed reviews of Krylov

subspace methods can be found in the literature [Saa92, Chapter 6], [Wat07, Chapter 9], [Hog13,

Chapter 49].

17



2.2. KRYLOV SUBSPACE METHODS

The focus of this thesis will be on model reduction techniques based on the Arnoldi algorithm

[Arn51] and the band Arnoldi algorithm [Fre03a]. The algorithms developed and presented in

Chapter 3 and Chapter 4 of this thesis will also adapt some of the characteristics the SOAR

algorithm [BS05b]. This section presents each of these algorithms and basic results are stated

without proof.

2.2.1 The Arnoldi Algorithm

The Arnoldi algorithm builds an orthonormal basis for the Krylov subspace induced by a

matrix M ∈ CN×N and a single starting vector R ∈ CN . In the nth iteration of the Arnoldi

algorithm, a new candidate basis vector for the orthonormal basis of K(M,R, n+1) is constructed

by projecting an M-multiple of the last basis vector against the orthogonal complement of the

span of all previously constructed basis vectors. This projection is accomplished via a modified

Gram-Schmidt orthogonalization.

Algorithm 1 Arnoldi

Input: Matrix M ∈ RN×N and vector R ∈ RN

Output: Basis Vn+1 for K(M,R, n+ 1) and Hessenberg Ĥn ∈ C(n+1)×n.
1. Calculate v1 := R/∥R∥2
2. for n = 1, 2, ... do
3. v̂n+1 := Mvn

4. for j = 1, 2, ..., n do
5. hjn := v̂T

n+1vj

6. v̂n+1 := v̂n+1 − hjnvj

7. end for
8. hn+1,n := ∥v̂n+1∥2
9. if hn+1,n = 0 then

10. STOP
11. end if
12. Set vn+1 := v̂n+1/hn+1,n

13. end for

At the end of n steps of the Arnoldi algorithm, the following relations hold

MVn = Vn+1Ĥn = VnHn + vn+1e
T
nhn+1,n, V H

n MVn = Hn,

where Hn is the square matrix formed by deleting the last row of Ĥn and en is the last column

of the n × n identity matrix. Further, the Arnoldi algorithm stops at some step n if, and only if,

K(M,R, n) has dimension n and K(M,R, n) = K(M,R, n + 1). In this case, n is the grade of

18



2.2. KRYLOV SUBSPACE METHODS

the Krylov subspace induced by M and R. If the Arnoldi algorithm stops during the nth iteration,

the space K(M,R, n) is invariant under multiplication by M. By construction, the column space

of Vn is the space K(M,R, n) and the columns of Vn form an orthonormal set. In other words,

V H
n Vn = In.

2.2.2 The Band Arnoldi Algorithm

The band Arnoldi algorithm is a generalization of the Arnoldi algorithm for multiple starting

vectors R ∈ CN×m. This technique enjoys improved theoretic properties over its block counterparts

due to an accurate deflation technique and the maintenance of exact projection relations.

Algorithm 2 Band Arnoldi

Input: Matrix M ∈ RN×N and block of starting vector R ∈ RN×m

Output: Orthonormal basis Vn for the block Krylov subspace K(M,R, n).
1. Set v̂i := ri for i = 1, 2, ...,m
2. Set mc := m and I := ∅
3. for n = 1, 2, ..., until convergence or mc = 0 do
4. Compute ∥v̂n∥2 and decide if deflation is necessary
5. if Deflation is necessary then
6. Set and store v̂defl

n−mc
:= v̂n. Set I := I ∪ {n−mc} and mc := mc − 1.

7. if mc = 0 then
8. n := n− 1 and STOP
9. end if

10. Set v̂i := v̂i+1 for i = n, n+ 1, ..., n+mc − 1
11. Repeat line 4 - line 10
12. end if
13. Set hn,n−mc

:= ∥v̂n∥2 and vn := v̂n/hn,n−mc

14. for j = n+ 1, n+ 2, ..., n+mc − 1 do
15. hn,j−mc

:= vT
n v̂j and v̂j := v̂j − hn,j−mcvn

16. end for
17. Compute v̂n+mc

:= Mvn

18. for j = 1, 2, ..., n do
19. hj,n := vT

j v̂n+mc and v̂n+mc
:= v̂n+mc − hj,nvj

20. end for
21. Set hni := vnv

defl
i for all i ∈ I

22. Set Hn :=
[
hjk
]
j,k=1,2,....,n

23. Set kρ := m+min{0, n−mc} and ρj :=
[
hj,k−mc

]
j,k=1,2,....,kρ

24. if n is large enough for desired application then
25. STOP
26. end if
27. end for

19



2.2. KRYLOV SUBSPACE METHODS

Assume that the band Arnoldi algorithm runs in exact arithmetic for n iterations. Let Vn =[
v1 v2 · · · vn

]
be the basis vectors stored in line 13 and denote the candidate vectors stored

in the algorithm as v̂n+1, v̂n+2, ..., v̂n+mc . The integer mc is the number of new candidate basis

vectors remaining after the nth iteration. At the start of this algorithm, mc = m and this counter is

decremented by one each time a deflation is encountered. The matrix Vn forms an orthonormal basis

matrix for the block Krylov subspace K(M,R, n). By construction V H
n Vn = In and V H

n v̂n+k = 0

for k = 1, 2, ...,mc.

The deflation decision for the band Arnoldi algorithm consists of calculating the norm of v̂n.

Exact deflation occurs at step n of the band Arnoldi algorithm if, and only if, v̂n = 0. In contrast,

inexact deflation occurs in step n if, and only if, v̂n ̸= 0 but ∥v̂n∥2 ≈ 0. Thus, the decision whether

or not to execute inexact deflation of the candidate vector v̂n is made by checking if

∥v̂n∥2 ≤ defl tol,(2.5)

where the deflation tolerance defl tol is chosen appropriately.

The positive integer m1 ≤ m is the number of linearly independent columns of the starting

block R. If n > m1, then at the end of n steps of the band Arnoldi algorithm,

R = Vnρn + R̂defl
m ,

MVn = VnHn +
[
0 · · · 0 v̂n+1 v̂n+2 · · · v̂n+mc

]
+ V̂ defl

n ,

where ρn ∈ Cn×m and Hn ∈ Cn×n is a band Hessenberg matrix.

The matrices R̂defl
m and V̂ defl

n are zero only if exact deflation is executed. In contrast, if both

exact and inexact deflation are used, the columns of V̂ defl
n may be nonzero vectors that satisfy the

condition of the inexact deflation check (2.5). Even using inexact deflation,

ρn = V H
n R and Hn = V H

n MVn.

This is a feature of the projection executed in line 21 of the band Arnoldi algorithm.

The band of outermost subdiagonal entries of Hn ends each time a deflation occurs at which

point the subdiagonal bandwidth of the matrix Hn decreases by one. If inexact deflation is used,

20



2.2. KRYLOV SUBSPACE METHODS

nonzero entries may fill the lower portion of the column of Hn marking the end of the outermost

band of nonzero subdiagonal entries. These potentially nonzero entries are designed to track the

projection coefficients corresponding to V H
n V̂ defl

n regardless of the deflation tolerance used to execute

inexact deflation.

Analogously, matrix ρn is upper-triangular with the outermost band of diagonal entries ending

each time deflation is encountered in the m columns of R. When using inexact deflation, nonzero

entries of ρn may fill the lower part of the columns of ρn whose indeces mark the columns of

R on which inexact deflation was executed. These nonzero entries track projection coefficients

corresponding to V H
n R̂defl

m .

Example 2.2.1. Suppose that the band Arnoldi algorithm is run for n = 11 iterations on the

matrices related to Example 2.1.5. Specifically, let the entries of the random matrix M ∈ C15×15

come from the standard normal distribution. Suppose R ∈ C15×5 and assume that r1 and r3 are

random vectors with entries from the standard normal distribution. Define

r2 = r1 + δ1z1, r4 = M2r1 + δ2z2, r5 = M3r1 + δ3z3,

where δi = O(ϵ), ϵ is the value of machine epsilon and the entries of zi come from the standard

normal distribution. Choose a deflation tolerance defl tol = O(
√
ϵ). After 11 iterations of the

band Arnoldi algorithm, almost certainly there will be 11 basis vectors and 3 inexact deflations

will have occurred. The sparsity structure of the resulting projection matrices ρ11 ∈ C11×5 and

21



2.2. KRYLOV SUBSPACE METHODS

H11 ∈ C11×11 generated by the band Arnoldi process is given as follows:

[
ρ11 H11

]
=



+ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 0 + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 0 0 + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 0 0 0 + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 0 0 0 0 × + ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 × 0 0 0 0 0 × 0 × + ∗ ∗ ∗ ∗ ∗

0 × 0 0 0 0 0 × 0 × 0 + ∗ ∗ ∗ ∗

0 × 0 0 0 0 0 × 0 × 0 0 + ∗ ∗ ∗

0 × 0 0 0 0 0 × 0 × 0 0 0 + ∗ ∗



.

Entries marked by ∗ indicate potentially nonzero coefficients while + indicates entries that are

provably positive. The entries marked by × indicate coefficients that may be nonzero only for

inexact deflation and are exactly zero for exact deflation. After 11 iterations of the band Arnoldi

algorithm executed on this example, mc = mc(11) = 2 = m− 3.

2.2.3 The SOAR Algorithm

The SOAR algorithm is a customized version of the Arnoldi algorithm tailored to matrix M

and single starting vector R with special structure. Assume that

M =

1
0

⊗
[
M (1) M (2)

]
+

 0 0

In0 0

 and R =

1
0

⊗ r,(2.6)

where M (1),M (2) ∈ Cn0×n0 and r ∈ Cn0 . For all positive integers k ≥ 2, define the sequence of

vectors

w1 = r, w2 = M (1)w1, wk = M (1)wk−1 +M (2)wk−2.

22



2.2. KRYLOV SUBSPACE METHODS

Definition 2.2.2. Let M (1),M (2) ∈ Cn0×n0 and suppose that r ∈ Cn0 is a nonzero vector. Let Sn

be the space

Sn = ⟨w1,w2, ...,wn⟩(2.7)

and call this space the nth second-order Krylov subspace.

The SOAR algorithm creates an orthonormal basis for the space Sn.

Algorithm 3 Second-Order Arnoldi (SOAR)

Input: Matrices M (1),M (2) ∈ Rn0×n0 and single starting vector r ∈ Rn0

Output: Matrix Q̂n+1 whose columns span Sn+1 (2.7).
1. Calculate q̂1 := r/∥r∥2 and set p1 := 0 ∈ Rn0

2. for n = 1, 2, ... do
3. q̂n+1 := M (1)q̂j +M (2)pj

4. for j = 1, 2, ..., n do
5. hjn := q̂T

n+1q̂j

6. q̂n+1 := q̂n+1 − hjnq̂j

7. end for
8. hn+1,n := ∥q̂n+1∥2
9. if hn+1,n ̸= 0 then

10. q̂n+1 := q̂n+1/hn+1,n

11. pn+1 := Q̂nĤ(2 : n+ 1, 1 : n)−1en
12. else
13. Reset hn+1,n = 1
14. q̂n+1 := 0

15. pn+1 := Q̂nĤ(2 : n+ 1, 1 : n)−1en
16. Check if this procedure should be stopped
17. end if
18. end for

If the SOAR procedure completes n iterations of the outer for-loop, then

M

Q̂n

Pn

 =

Q̂n+1

Pn+1

 Ĥn,(2.8)

where Ĥn is the Hessenberg matrix with coefficients hjk formed in each iteration for j = 1, 2, ..., n+1

and k = 1, 2, ..., n. Using Proposition 2.1.10, it can be shown that the SOAR algorithm stops at step

n if, and only if, the Arnoldi algorithm stops at the same step n. The nonzero columns of the matrix

Q̂n+1 form an orthonormal basis for the space Sn+1. The paper introducing the SOAR algorithm

[BS05b] has details about checking the stop condition and discusses an implementation of this

23



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

algorithm that avoid explicit storage of all auxiliary vectors pn+1 = Q̂nĤ(2 : n+1, 1 : n)−1en. These

auxiliary vectors guarantee the SOAR matrix relation (2.8) which in turn assures that the essential

information from the Krylov subspaces induced by M and R is available for the construction of

Q̂n+1.

The three Krylov subspace methods presented above lay the foundations for moment-matching

model order reduction techniques developed in this thesis. The next section develops important

concepts in linear dynamical systems.

2.3 Time-Invariant Linear Dynamical Systems

One class of mathematical equations amenable to the Structure Exploiting Arnoldi algorithm

developed in this thesis are multi-input, multi-output time-invariant linear dynamical systems of

order ℓ. These systems of differential-algebraic equations can be formulated using matrices, vectors

and differential operators. Let m, p, and ℓ be integers greater than zero, where m denotes number

of inputs, p represents the number of outputs and ℓ is the order of such systems.

Definition 2.3.1. Anm−input p−output time-invariant linear dynamical system of order

ℓ is a system of differential-algebraic equations (DAEs) in the form

(2.9)
Pℓ

dℓ

dtℓ
z(t) + Pℓ−1

dℓ−1

dtℓ−1
z(t) + · · ·+ P1

d

dt
z(t) + P0z(t) = Bu(t),

y(t) = Du(t) + Lℓ−1
dℓ−1

dtℓ−1
z(t) + · · ·+ L1

d

dt
z(t) + L0z(t),

with Pi ∈ Cn0×n0 for i = 0, 1, ..., ℓ, B ∈ Cn0×m, D ∈ Cp×m and Lj ∈ Cp×n0 for j = 0, ..., ℓ − 1.

The state-space dimension of this ℓth-order system is n0. This system is fully determined by the

specification of initial conditions given by

dj

dtj
z(t)

∣∣∣∣
t=t0

= z
(j)
0 ,(2.10)

with z
(j)
0 ∈ Cn0 for 0, j = 1, 2, ..., ℓ.

The vector-valued input function u(t) maps the domain [t0,∞) into Cm and represents the

system input controlled by the design engineers. The function z(t) of state-space variables describes

the internal state of the system at any time t ∈ [t0,∞) via its component parts and maps into Cn0 .

24



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

The output function y(t) from [t0,∞) to Cp describes the systems interactions with the external

environment at time t. Examples of higher-order systems can be found in the literature [SC91],

[BS05a].

In this thesis, the matrix Pℓ may be singular. The only assumption for matrices Pi with

i ∈ {0, 1, ..., ℓ} is that the n0 × n0 complex, matrix-valued polynomial

P (s) = sℓPℓ + sℓ−1Pℓ−1 + · · ·+ sP1 + P0, s ∈ C(2.11)

is regular.

An important special case of the general higher-order system (2.9) is a special second-order time-

invariant linear dynamical system known as a system of first-order integro-differential-algebraic

equations (integro-DAEs).

Definition 2.3.2. An m−input p−output time-invariant system of first-order integro-

DAEs takes the form

(2.12)
P1

d

dt
z(t) + P0z(t) + P−1

t∫
t0

z(τ)dτ = Bu(t),

y(t) = Du(t) + L0z(t),

with Pi ∈ Cn0×n0 for i ∈ {−1, 0, 1}, B ∈ Cn0×m, D ∈ Cp×m and L0 ∈ Cp×n0 . The state-space

dimension of this system is n0. This system is fully determined by the specification of initial

conditions given by

z(t0) = z0,(2.13)

with z0 ∈ Cn0 .

In the definition of a first-order integro-DAE, the matrix P1 may be singular. The only as-

sumption on the matrices Pi ∈ Cn0×n0 for i ∈ {−1, 0, 1} is that the matrix-valued function

Q(s) = sP1 + P0 +
1

s
P1, s ∈ C(2.14)

is regular.

25



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

In the applications considered in this thesis, the matrices P1 and P0 are sparse. While the

matrix P−1 may not be sparse, it can generally be written as a product of sparse matrices given by

P−1 = F1GFH
2(2.15)

or

P−1 = F1G
−1FH

2 , with G nonsingular,(2.16)

where F1, F2 ∈ Cn0×n̂ and G ∈ Cn̂×n̂ are sparse for some positive integer n̂. In the case that

P−1 = F1GFH
2 , the matrix G need not be invertible. One of the two factorizations (2.15) or (2.16)

will always exist as indicated by the trivial factorization F1 = In0 = F2 and G = P−1. For this

reason, this thesis assumes for any first-order integro-DAEs, P−1 is given by one of the two products

(2.15) or (2.16). Examples of these systems arise in real-world applications like VLSI interconnect

analysis [Fre00], [Fre03b], [Fre04].

With the extra assumptions that D = 0 and that the input function u(t) is differentiable,

the special second-order system (2.12) can be transformed into a “true” second-order system by

differentiating both side of the first equation to yield

P1
d2

dt2
z(t) + P0

d

dt
z(t) + P−1z(t) = Bû(t),(2.17)

y(t) = L0z(t),(2.18)

with

û(t) =
d

dt
u(t).

Although this transformation is convenient for relating special second-order systems (2.12) to gen-

eral ℓth-order systems (2.9) with ℓ = 2, it requires additional assumptions on the input function

u(t). Moreover, if the original system of first-order integro-DAEs is passive, the transfer function

H(s) associated with the system of integro-DAEs is positive real while the transfer function of

the transformed second-order system (2.17) will not be positive real in general. Because impor-

tant system properties relating to passivity and the energy consumed by the system are encoded

26



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

in the integro-DAE formulation and not in the “equivalent” second-order formulation, first-order

integro-DAEs receive special attention in Chapter 4.

Linearization of Higher-Order Systems

It is well known that any general higher-order system can be linearized to take the form of a

first-order linear dynamical system.

Definition 2.3.3. The state-space description of an m-input p-output time-invariant first-

order linear dynamical system with N state variables is given by the set of equations

(2.19)
E d

dt
x(t) = Ax(t) + Bu(t),

y(t) = Lx(t) +Du(t),

The system is completed with the initial conditions given by

x(t)|t=t0
= x0(2.20)

The matrix A ∈ CN×N in the first equation of the state-space description (2.19) is known as the

system matrix while E ∈ CN×N is called the the descriptor matrix. The input matrix for the state-

space description is B ∈ CN×m. These linear dynamical systems are classified as time-invariant

because the matrices A, E , B, L, and D are invariant with respect to the variable t.

The input (control) vector is described by a time-dependent, vector-valued function u : [t0,∞) →

Rm as is the state-space vector x : [t0,∞) → RN . Intuitively, the differential equation from the

state-space description (2.19) indicates that changes in the internal state of the system are linearly

related to the present state and the behavior of the input.

The matrix L ∈ Cp×N is called the output matrix and D ∈ Cp×m is known as the feed-through

matrix. The output vector y : [t0,∞) → Rp represents the output of the system within its external

environment. The second algebraic equation in the state-space description (2.19) reveals that the

output of the system is a linear function of the internal state of the system and the behavior of the

input.

If the matrix E is nonsingular, the linear system (2.19) is called regular. Regular systems can

always be transformed into a system of ODEs by multiplying the first equation in the system (2.19)

27



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

by E−1 to generate

d

dt
x(t) = (E−1A)x(t) + (E−1B)u(t),

y(t) = Lx(t) +Du(t).

In contrast, if E is singular, the system is known as a descriptor system. Singular E matrices

represent a system of differential-algebraic equations (DAEs). Accurately solving DAEs is much

more difficult than solving ODEs. The algorithms developed in Chapters 3 and 4 of this work

assume that the input data come from a descriptor system and require only that the matrix pencil

sE − A is regular.

Any ℓth-order linear dynamical system (2.9) can be transformed into an equivalent first-order

system (2.19). Given a higher-order linear dynamical system in general form (2.9), (2.10), one

possible set of linearization matrices is defined by

E =



I 0 0 · · · 0

0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

0 · · · 0 0 Pℓ


, A = −



0 −I 0 · · · 0

0 0 −I · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 0 −I

P0 P1 P2 · · · Pℓ−1


,(2.21)

where the state-space variables are given by the equations

x(t) =



z(t)

d
dtz(t)

d2

dt2
z(t)
...

dℓ−1

dtℓ−1 z(t)


, x0 =



z
(0)
0

z
(1)
0

z
(2)
0

...

z
(ℓ−1)
0


,(2.22)

28



2.3. TIME-INVARIANT LINEAR DYNAMICAL SYSTEMS

and the matrices B,L and D are defined

B =



0

0
...

0

B


, L =

[
L0 L1 · · · Lℓ−2 Lℓ−1

]
, D = D.(2.23)

Verification that this linearization produces an equivalent first-order state-space description of a

time-invariant linear dynamical system (2.19) follows using block matrix-matrix and block matrix-

vector multiplication [Fre05]. This choice of linearization is not unique. More about linearization

matrices can be found in the literature on matrix polynomials [GLR09].

Just as general ℓ-th order systems can be linearized, so too can any system of first-order integro-

DAEs be transformed into an equivalent first-order system (2.19) [Fre05]. For example, consider

a system of first-order integro-DAEs (2.12) with P−1 = F1GFH
2 . Set

x1(t) = z(t) and x2(t) = FH
2

t∫
t0

z(τ)dτ

Then
d

dt
x2(t) = F2x1(t). The linearization matrices for the equivalent first-order system are given

by

A = −

 P0 F1G

−FH
2 0

 , E =

P1 0

0 In0

 ,(2.24)

with state-space variables

x(t) =

x1(t)

x2(t)

 , x0 =

z0
0

 .(2.25)

Matrices B,L, and D are given by

B =

B
0

 , L =
[
L0 0

]
, D = D.(2.26)

29



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

On the other hand, suppose that the system of the first-order integro-DAE (2.12) is such that

P−1 = F1G
−1FH

2 . To linearize this system, define the vector valued functions

x1(t) = z(t) and x2(t) = G−1FH
2

t∫
t0

z(τ)dτ,

and note that G
d

dt
x2(t) = F2x1(t). Then, setting

A = −

 P0 F1

−FH
2 0

 , E =

P1 0

0 G

 ,(2.27)

with state-space variables

x(t) =

x1(t)

x2(t)

 , x0 =

z0
0

 ,(2.28)

and matrices B,L, and D given by

B =

B
0

 , L =
[
L0 0

]
, D = D.

produces an equivalent first order system (2.19).

Once a general higher-order linear dynamical systems has been transformed into its equivalent

first-order form, model reduction techniques applicable to first-order systems can be used to process

high-order data. This is a convenient way to create reduced order models for large-scale higher-order

systems.

2.4 Krylov Subspace-Based Model Reduction

Padé-type models of first-order time-invariant linear dynamical system (2.19) are generated

using basis vectors related to the Krylov-subspaces induced by matrix M and starting vectors R

(1.5).

Theorem 2.4.1. Suppose A, E ,B,L and D form the state-space description of an m-input p-output

time invariant first-order linear dynamical system with state-space dimension N (2.19). Choose

s0 ∈ C and Vn ∈ CN×n1 such that the matrices s0E − A and s0En − An are nonsingular. Let

30



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

n = n(k) = m1 +m2 + · · ·+mk for some 1 ≤ k ≤ k0 (2.4) and suppose

K(M,R, n) ⊆ range
(
Vn

)
.(2.29)

Then the reduced-order model defined by the projections

En = V H
n EVn, An = V H

n AVn, Bn = V H
n B, Ln = LVn.(2.30)

is a Padé-type model with

Hn(s) = H(s) +O
(
(s− s0)

k
)
.

A concise proof of this result can be found in the literature [Fre08]. Reduced-order models that

satisfy the Padé-type moment-matching criteria (1.12) come from projecting the original system

onto a basis Vn whose span contains K(M,R, n). In effect, this theoretic result translates the

challenge of creating accurate reduced-order models into a basis generation problem involving block

Krylov subspaces. The popular (band) Arnoldi algorithm constructs an orthonormal basis for the

proper Krylov subspaces (2.29).

Algorithm 4 (Band) Arnoldi-Based Dimension Reduction of First-Order Systems

Input: Matrices A, E ,B,L, and D from first-order system (2.19)
Output: Reduced-order system (1.2)
1. Select an expansion point s0 and choose reduction dimension n.
2. Run n steps of the (band) Arnoldi algorithm to produce orthonormal basis for the nth-order

Krylov subspace induced by M and R.
3. Obtain the reduced-order model for the original system by setting

An = V T
n AVn, En = V T

n EVn, Bn = V T
n B, Ln = LVn, Dn = D.(2.31)

The matrix M is never formed explicitly in the implementation of (band) Arnoldi-based reduc-

tion. Instead, a sparse LU-factorization

s0E − A = P TLU QT

is calculated using sparse matrix technology [Dav06]. Here, P and Q are permutation matrices, L

is lower-triangle with ones on the main diagonal and U is upper-triangular with nonzero diagonal

31



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

entries. Matrix-vector multiplication of M with a single vector v̂ proceeds using the equation

Mv̂ = Q

(
U−1

(
L−1

(
P (E v̂)

)))
.

For most applications of interest, this equivalent method of multiplying by M is quite fast due

to sparse matrix-vector multiplication and sparse forward and backward substitution. Finding the

sparse LU factorization for M dominates the cost of computing (band) Arnoldi-based reduced order

models.

Another feature of (band) Arnoldi-based reduction is that the reduced-order matrices (2.31)

are not calculated using explicit projection onto the span of Vn. Instead, the desired reduced-order

model comes from the (band) Hessenberg matrix Hn ∈ Cn×n generated by the (band) Arnoldi

algorithm. Recall that the transfer function H(s) is created by applying the Laplace transform

to the state-space description of the first-order linear dynamical system (2.19) with zero initial

condition. Then, choosing s0 ∈ C such that s0E − A is nonsingular, the Taylor series expansion of

H(s) about the point s0 is stated using matrix M and vector(s) R (1.5) synthesized by recognizing

the following algebraic trick

sE − A =

(
(s0E − A) + ((s− s0)E)

)
= (s0E − A)

(
I + (s− s0)(s0E − A)−1E

)
.

Algebraic manipulation of the matrix pencil sE − A translates into an equivalent first-order linear

dynamical system as follows:

M d

dt
x(t) = (s0M− I)x(t) +Ru(t),

y(t) = Lx(t) +Du(t).

By comparing coefficient matrices, the projections for the reduced-order system (2.31) are calculated

efficiently using data available from the (band) Arnoldi algorithm, where

An = V T
n AVn = s0Hn − In, En = V T

n EVn = Hn, Bn = ρn,

and ρn = V T
n R. If L ≠ BH , then LVn must be calculated explicitly. This (band) Arnoldi-based

reduction technique produces Padé-type models for any higher-order linear dynamical system in

state-space form.

32



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

Algorithm 5 (Band) Arnoldi-Based Dimension Reduction for Higher-Order Systems

Input: An ℓ-th order system (2.9) or special second-order system (2.12).
Output: A reduced first-order system (1.2)
1. Transform general higher-order system into equivalent first-order system (2.19) by defining

proper linearization matrices A, E ,B, and L with state-space dimension N .
2. Execute (band) Arnoldi-based dimension reduction for the equivalent first-order system using

Algorithm 4

Transforming a higher-order linear dynamical system into an equivalent first-order formulation

and then applying reduction techniques designed to process first-order data is a popular strategy to

approach large-scale higher-order problems [OCP97]. However, a legitimate criticism of this pro-

cedure is that the data matrices associated with the transformed system have state-space dimension

N , which is significantly larger than the matrices determining the original higher-order equations.

In addition, brute force projection using Vn ignores inherent structure of linearization matrices. As

will be shown in this thesis, customizing Krylov subspace-based projection mechanisms for higher-

order linear dynamical systems yields reduced-order models that preserve higher-order structure.

Initial attempts to create Krylov subspace-based reduction techniques that exploit structure

inherent in the linearization matricesA, E ,B and L exist in the literature [SC91], [Fre05], [BS05a],

[Mee08], [Fre11]. The SOAR-based dimension reduction [BS05a] is designed for applications to

second-order systems (2.9).

The resulting reduced-order system (2.33) is a Padé-type model of the original system (2.32).

However, the SOAR algorithm does not provide a mechanism to deal with multiple-input, multiple-

output higher-order systems. While SOAR suggests a viable reduction technique for single-input

second-order systems, it does not provide a mechanism to deal with multiple-input system efficiently

nor does it enable a more general reduction technique for any ℓth-order system (2.9) with ℓ ≥ 2.

33



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

Algorithm 6 SOAR-Based Dimension Reduction for Second-Order Systems

Input: A single-input, single-output second-order system

(2.32)
P2

d2

dt2
z(t) + P1

d

dt
z(t) + P0z(t) = Bu(t),

y(t) = L0z(t).

Output: An equivalent reduced second-order system

(2.33)
P̃2

d2

dt2
z(t) + P̃1

d

dt
z(t) + P̃0z(t) = B̃u(t),

y(t) = L̃0z(t).

1. Select expansion point s0 such that P̂ = P (s0) = s20P2 + s0P1 + P0 is nonsingular and choose
reduction dimension n.

2. Run n− 1 steps of the SOAR algorithm with

M (1) = −P̂−1(2s0P2 + P1), M (2) = −P̂−1(P2), r = P̂−1B,

to produce matrix Q̂n whose column spans Sn.
3. Obtain the reduced order model for the original system by projection:

P̃i = QT
nPiQn, B̃ = QT

nBQn, L̃0 = QT
nL0Qn,

for i ∈ {0, 1, 2}.

For special first-order integro-DAEs (2.12), the SPRIM algorithm [Fre04] is an inventive

reduced-order modeling technique designed to preserve structure of the original state-space de-

scription. As mentioned above, any system of integro-DAEs can be transformed into an equivalent

first-order time-invariant linear dynamical system. The transformed system can be reduced using

the (band) Arnoldi algorithm as indicated in Algorithm 5. SPRIM takes this reduction strategy one

step further. By initially executing a classic Krylov subspace-based moment-matching reduction

technique to get a basis matrix for K(M,R, n), the SPRIM algorithm post-processes the resulting

basis matrix Vn and executes the necessary projections in a way that maintains the structure of

the linearization matrices.

The extra processing in the SPRIM algorithm guarantees that the resulting reduced system is

a Padé-type model and ensures that system properties are maintained by the reduced-order model.

If the equivalent first-order system exhibits J-Hermetian structure [Fre08], the SPRIM-inspired

reduced-order models match twice as many moments as the corresponding brute-force Arnoldi-

based reduction.

34



2.4. KRYLOV SUBSPACE-BASED MODEL REDUCTION

Algorithm 7 SPRIM-Based Dimension Reduction for First-Order Integro-DAEs

Input: Linearization matrices arising from special first-order integro-DAEs in the form

E =

[
E11 0
0 E22

]
, A = −

[
A11 A12

−AT
12 0

]
, B =

[
B
0

]
, L =

[
L0 0

]
,(2.34)

with E11 ⪰ 0, E22 ⪰ 0 and A11 ⪰ 0.
Output: An equivalent reduced-order system

Ẽn =

[
Ẽ11 0

0 Ẽ22

]
, Ãn = −

[
Ã11 Ã12

−ÃT
12 0

]
, B̃n =

[
B̃
0

]
, L̃n =

[
L̃0 0

]
,(2.35)

with Ẽ11 ⪰ 0, Ẽ22 ⪰ 0 and Ã11 ⪰ 0.
1. Select an expansion point s0 such that Q̂ = Q(s0) = s0P1 + P0 +

1
s0
P−1 is nonsingular and

choose reduction dimension n.
2. Run n steps of any block Krylov subspace method applied to M and R to generate matrix Vn

such that the column span (Vn) = K(M,R, n)

3. Partition the columns of the matrix Vn =

[
Ṽ1

Ṽ2

]
with block sizes corresponding to those of A

and E .
4. Post-process the matrix Ṽi to produce a matrix V̂i whose columns are orthonormal and span

the range of Ṽi for i = 1, 2.
5. Set

Ẽ11 = V̂ T
1 E11V̂1, Ẽ22 = V̂ T

2 E22V̂2,

Ã11 = V̂ T
1 P1V̂1, Ã12 = V̂ T

1 A12V̂2,

B̃ = V̂ T
1 B, L̃0 = L0V̂1

using matrix-matrix multiplication to compute each projection.

Opportunities exist to improve Krylov-subspace based model order reduction techniques for

both general ℓth-order systems and special second-order systems. Chapter 3 generalizes the SOAR

algorithm for any ℓth-order linear dynamical systems (2.9) and includes a mechanism to reduce

multiple-input, multiple-output systems. Chapter 4 develops an algorithm that reduces special

second-order systems by producing the matrices V̂1 and V̂2 used in the SPRIM algorithm without the

having to post-process any data. The results presented in Chapter 4 represent marked improvements

in computational efficiency for model order reduction of first-order integro-DAEs.

35



CHAPTER 3

The SEA Algorithm for Matrices in Case One Form

The Structure Exploiting Arnoldi (SEA) algorithm presented in this chapter is a novel reduced-

order modeling technique for ℓth-order time-invariant linear dynamical systems for any ℓ ≥ 2. As

discussed in Section 2.4, a popular approach to model reduction of a given higher-order system

is to linearize the system and apply classic Krylov subspace-based moment-matching reduction

techniques to the equivalent first-order formulation. Not only does this strategy result in an ℓ-fold

increase in the size of the data being processed, it also ignores structure inherent in the linearization

matrices. Moreover, the resulting reduced-order model can only be stated as a first-order system,

a distinct disadvantage if key system properties are encoded in the higher-order system equations.

Initial attempts to address the weaknesses of the linearization approach to dimension reduction

of higher-order systems exploit the structure of linearization matrices for second-order systems

(ℓ = 2) [SC91], [BS05a]. These techniques do not address the general ℓth-order case (ℓ ≥ 2) nor

are these procedures based on the structure of the underlying Krylov subspaces [Fre05]. Finally,

none of these routines include accurate deflation mechanisms for block Krylov subspaces resulting

from a block of starting vectors.

Theoretic and numeric results included in this chapter demonstrate an improved model order

reduction technique for ℓth-order systems with multiple input vectors. Section 3.1 extends prior

structure results for block Krylov subspaces associated with matrices in case one form, a special

class of matrices related to linearized ℓth-order linear dynamical systems [Fre05]. Unique to this

work is an improved method of executing exact deflation without explicitly manipulating columns

of the block Krylov matrix. Section 3.2 describes a generic single-input SEA algorithm for matrices

in case one form and establishes the key theoretic properties that any structure exploiting algorithm

of this flavor should exhibit. Section 3.3 adapts the generic SEA algorithm for a special subclass

of matrices in case one form arising from linearized ℓth-order linear dynamical systems including a

computationally efficient stop condition. Section 3.4 presents band versions of the SEA algorithms

36



3.1. EXPLORING MATRICES IN CASE ONE FORM

for multiple input vectors. Section 3.5 gives the SEA-based model reduction technique for multiple-

input, ℓth-order systems with ℓ ≥ 2 and presents numerical results demonstrating the effectiveness

of this method. The last section of this chapter concludes with a summary of the advantages of

SEA-based model order reduction for ℓth-order linear dynamical systems.

3.1 Exploring Matrices in Case One Form

The first completely general analysis of the structure of block Krylov subspaces associated

with linearized higher-order systems defines a generic class of structured matrices that can be

used to describe matrices M and R corresponding to transfer function H(s) (1.4) arising from

the linearization of ℓth-order systems [Fre05]. This initial study provides a factorization of any

basis matrix for the block Krylov subspaces induced by these types of matrices, so called matrices

in case one form. These factorization result can be refined from the stand point of generating

an orthonormal basis for the column space of the multiple copied matrix factor. Included in this

section are a recurrence relation providing insight into the basis generation problem for the multiple

copied subspace, an alternative proof to the original structure result and a full-rank factorization

result suggesting an improved deflation mechanism for basis matrices of associated block Krylov

subspaces.

Definition 3.1.1 (Freund [Fre05]). Let n0 and ℓ be natural numbers. Let N = n0 · ℓ. Let

c =
[
c1 c2 · · · cℓ

]T
∈ Cℓ be a vector such that ci ̸= 0 for all i = 1, 2, ..., ℓ. Suppose that

F =
[
M (1) M (2) · · · M (ℓ)

]
∈ Cn0×N and M (i) ∈ Cn0×n0 for i = 1, ..., ℓ.(3.1)

Let S ∈ Cℓ×ℓ and assume R ∈ Cn0×m. Matrices M and R are said to be in case one form if, and

only if,

M =
(
c⊗ F + S ⊗ In0

)
∈ CN×N and R = c⊗R ∈ CN×m.(3.2)

One class of matrices in case one form arise from the Taylor series expansion of the transfer

function H(s) (1.4) associated with linearized ℓth-order linear dynamical systems.

Proposition 3.1.2 (Freund [Fre05]). Transform a given ℓth-order linear dynamical system (2.9)

into a first-order equivalent system using the appropriate linearization matrices (2.21), (2.23).

37



3.1. EXPLORING MATRICES IN CASE ONE FORM

Suppose that the matrix pencil P (s) (2.11) is regular and choose nonzero s0 ∈ C such that
(
P (s0)

)−1

exists. For i = 1, 2, ..., ℓ, let

M (i) = (P (s0))
−1

 ℓ−i∑
j=0

sj0Pi+j

 , and R = (P (s0))
−1B.(3.3)

Then, matrices

(3.4)
M = (s0E − A)−1E = c⊗ F + S ⊗ In0 ,

R = (s0E − A)−1β = c⊗R

for special choices

c =



1

s0

s20
...

sℓ−1
0


and S = −



0 0 · · · · · · 0

1 0
. . .

...

s0 1 0
. . .

...

...
. . .

. . .
. . .

...

sℓ−2
0 · · · s0 1 0


,

Block Krylov subspaces induced by matrices in case one form have inherent structure. Assume

matrices M ∈ CN×N and R ∈ CN×m are in case one form for the rest of Chapter 3.

Proposition 3.1.3 (Freund [Fre05]). Let V be any basis matrix of the block-Krylov subspaces

induced by M and R. Then,

V =


WU (1)

WU (2)

...

WU (ℓ)


(3.5)

where W ∈ Cn0×N0 and U (i) ∈ CN0×N0 is nonsingular and upper-triangular for i = 1, 2, ...ℓ.

Let wi ∈ Cn0 be the ith column of the matrix W ∈ Cn0×N0 , for i = 1, 2, ..., N0. Let

Sn = ⟨w1,w2, ...,wn⟩ ⊆ Cn0 ,(3.6)

for n = 1, 2, ..., N0. This space will of central importance throughout the rest of Chapter 3.

38



3.1. EXPLORING MATRICES IN CASE ONE FORM

The original proof of the case one structure result (3.5) factorizes the deflated block Krylov

matrix induced by M and R. Using a recurrence relation for the block columns of W coupled with

block-columns of U (i), the proof illustrates

[
R1 MR2 · · · Mk0−1Rk0

]
=


WU (1)

WU (2)

...

WU (ℓ)


.

However, block partitions of W can be constructed without specific reference to matrices U (i), for

i = 1, 2, ..., ℓ.

Proposition 3.1.4. Let m0 = m and suppose that Ej ∈ Cmj−1×mj is the appropriate elimination

matrix from the exact deflation process for j = 1, 2, ..., k0. Initialize the coupled recursion

W1 = RE1, A1 = c⊗W1.(3.7)

Define the (k + 1)st coupled recursion pair as

Wk+1 = FAkEk+1, Ak+1 = c⊗Wk+1 + (S ⊗ In0)AkEk+1,(3.8)

for k = 1, 2, ..., k0 − 1. Then, the kth block of the deflated block Krylov matrix induced by M and

R 2.1.4 can be represented as

Mk−1Rk = Ak,(3.9)

for k = 1, 2, ..., k0

Proof: This claim is established by induction. Notice A1 = c⊗RE1 = R1. Assume Ak = Mk−1Rk.

Now consider

Ak+1 = c⊗Wk+1 + (S ⊗ In0)AkEk+1 = MkRk+1,

which is the desired result. □

39



3.1. EXPLORING MATRICES IN CASE ONE FORM

Remark 3.1.5. This result demonstrates that any algorithm design to exploit the structure of

block Krylov subspaces induced by matrices M and R in case one form (3.5) will need to produce

an auxiliary basis matrix Ân for K(M,R, n). Updates for candidate basis vectors of Sn will also

need to be generated by multiplying columns of this Ân with the matrix F . This is a key theoretical

insight of this chapter and most work that follows builds on this realization. Decoupling the columns

of W and the columns of U (i) enables basis vectors of Sn to be studied without suggesting a one-

to-one correspondence with columns of the corresponding deflated block Krylov matrix.

3.1.1 Alternative Proof of the Factorization Result

The recursive formulation of the deflated block Krylov matrix induced by M and R provides

insight into an alternative proof for Proposition 3.1.3.

Proof: Partition possible candidate factors W and U (i) using the block sizes of the deflated block

Krylov matrix induced by M and R where

W =
[
W1 W2 · · · Wk0

]
, U (i) =



U
(i)
11 U

(i)
12 · · · U

(i)
1,k0

0 U
(i)
22

. . . U
(i)
2,k0

...
. . .

. . .
...

0 · · · 0 U
(i)
k0,k0


,

Wk ∈ Cn0×mk and U
(i)
kk ∈ Cmk×mk for all i = 1, 2, ..., ℓ and k = 1, 2, ..., k0. Let Wk is defined as in

Proposition 3.1.4 for k = 1, ..., k0 and define the subblocks of U (i) as
U

(1)
kk
...

U
(ℓ)
kk

 = c⊗ Imk
,


U

(i)
1k
...

U
(i)
k−1,k

 =
ℓ∑

t=1

si,t


U

(t)
1,k−1
...

U
(t)
k−1,k−1

Ek,(3.10)

40



3.1. EXPLORING MATRICES IN CASE ONE FORM

for k = 1, 2, ..., k0, j = 1, 2, ..., k − 1 and i = 1, 2, ..., ℓ. The desired relation (3.5) holds if, and only

if,

Mk−1Rk =

(
Iℓ ⊗

[
W1 W2 · · · Wk

])




U

(1)
1k
...

U
(1)
kk


...

U
(ℓ)
1k
...

U
(ℓ)
kk




(3.11)

Induction on k illustrates that W and U (i) factorize the deflated block Krylov matrix induced

by matrices M and R in case one form (3.5). For k = 1,

R1 = c⊗RE1 =


c1R
...

cℓR

E1 = (Iℓ ⊗W1)


U

(1)
11

...

U
(ℓ)
11

 .

Assume the equivalent structure relation (3.11) holds for some k ∈ {1, 2, ..., k0−1}. Then MkRk+1

can be written as

(
c⊗ F

)
AkEk+1 +

(
S ⊗ In0

)(
Iℓ ⊗

[
W1 · · · Wk

])




U

(1)
1k
...

U
(1)
kk


...

U
(ℓ)
1k
...

U
(ℓ)
kk




Ek+1(3.12)

Let n = n(k) = m1 + · · ·+mk (2.4). By properties of the Kronecker product,

(
S ⊗ In0

)(
Iℓ ⊗

[
W1 · · · Wk

])
=

(
Iℓ ⊗

[
W1 · · · Wk

])(
S ⊗ In

)
.

41



3.1. EXPLORING MATRICES IN CASE ONE FORM

The matrix MkRk+1 can be rewritten

MkRk+1 =
(
c⊗Wk+1

)
+ Iℓ ⊗

[
W1 · · · Wk

]



ℓ∑
t=1

s1,t


U

(t)
1,k
...

U
(t)
k,k

Ek+1

...

ℓ∑
t=1

sℓ,t


U

(t)
1,k
...

U
(t)
k,k

Ek+1


.

By combining appropriate rules of matrix arithmetic with the definitions for U
(i)
j,k+1 for j =

1, 2, ..., k + 1 and i = 1, 2, ..., ℓ, the desired equation (3.11) is satisfied. □

3.1.2 Full-Rank Factorization

An immediate corollary to Proposition 3.1.3 replaces the column rank deficient matrix W with

a factor Q having full column rank.

Corollary 3.1.6. Let V be any basis matrix of the block-Krylov subspaces induced by M and R.

Then, V can be represented in the form

V = (Iℓ ⊗Q)


X(1)

X(2)

...

X(ℓ)


(3.13)

where Q ∈ Cn0×w0 has full column rank. Each X(i) ∈ Cw0×N0 is in row echelon form and the

sparsity structure of X(i) is identical to that of X(j) for i, j = 1, 2, ..., ℓ.

Proof: By Proposition 3.1.3, the basis matrix V can be factored using matrices W and U (i) for

i = 1, 2, ..., ℓ. If W has column rank w0 ≤ n0, then W = QR̂ where Q ∈ Cn0×w0 has orthonormal

columns and R̂ ∈ Cw0×N0 stores the relationships between the column vectors of Q and all columns

of W . Setting X(i) = R̂U (i) for i = 1, 2, ..., ℓ completes this proof. □

42



3.1. EXPLORING MATRICES IN CASE ONE FORM

Remark 3.1.7. The focus of this chapter is to accurately generate the columns of the matrix Q one

at a time. This matrix will ultimately be used to produce projection-based Padé-type reduced-order

models that can be stated as higher-order systems. A modified Gram-Schmidt style algorithm will

be adapted for this purpose.

A more detailed discussion of the linearly independent columns of W is in order. Denote the

column rank of W as w0 ≤ n0. Partition the set of column indices {1, 2, ..., N0} of the matrix W

into two disjoint sets β = {b1, ..., bw0} and δ = {d1, ..., dN0−w0}. Starting from the leftmost column

of W and moving to the right, choose bj to be the column index of the jth linearly independent

column of the matrix W , for j = 1, ..., w0. Proceeding in the same order, choose dj to be the column

index of the jth linearly dependent column of W , for j = 1, ..., N0 − w0. Here, b1 < b2 < · · · < bw0

while d1 < d2 < · · · < dN0−w0 .

Let the sequence of nonnegative integers w1, w2, ..., wk0 indicate the number of new indices

contributed to the set β by the subblocks W1,W2, ...,Wk0 , respectively. In other words, wj is the

number of new basis vectors for the columns space of W contributed by Wj . As a consequence,

there are mj − wj new indices added to the set δ for each block Wj . Note that 0 ≤ wj ≤ mj and

w0 = w1 + w2 + · · ·+ wk0 .

These dimensions permit a block column partition of Q ∈ Cn0×w0 and X(i) ∈ Cw0×N0 from

Corollary 3.1.6 as

Q =
[
Q1 Q2 · · · Qk0

]
, X(i) =


X

(i)
11 X

(i)
12 · · · X

(i)
1k0

0 X
(i)
22 X

(i)
2k0

...
. . .

. . .
...

0 · · · 0 X
(i)
k0k0


(3.14)

with Qj ∈ Cn0×wj , for j = 1, 2, ..., k0 and X
(i)
jk ∈ Cwj×mk for i = 1, 2, ..., ℓ and j, k = 1, 2, ..., k0.

This full-rank factorization provides a powerful method to execute exact deflation on the columns

of KN (M,R) without explicitly manipulating vectors of size N .

Example 3.1.8. This example that illustrates the difference between the original factorization

offered in Proposition 3.1.3 and the streamlined factorization from Corollary 3.1.6. Let M and R

43



3.1. EXPLORING MATRICES IN CASE ONE FORM

be defined by

M (1) =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, M (2) =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, R =



1

0

0

0

0


,

and set

c =

1
1

 , S =

0 0

2 0

 ,

with n0 = 5, m = 1, and ℓ = 2. The first five columns of the factorization suggested by Proposi-

tion 3.1.3 are given by

44



3.1. EXPLORING MATRICES IN CASE ONE FORM

[
R MR M2R M3R M4R

]
=


I2 ×



1 1 2 8 24

0 1 4 8 20

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 2 0 0 0

0 1 2 0 0

0 0 1 2 0

0 0 0 1 2

0 0 0 0 1



.

The corresponding factorization suggested in Corollary 3.1.6 is

[
R MR M2R M3R M4R

]
=


I2 ⊗



1 0

0 1

0 0

0 0

0 0






1 1 2 8 24

0 1 4 8 20

1 3 4 12 40

0 1 6 16 36


.

The Krylov matrix K10(M,R) has rank four while the matrix factor W has rank two. As will be

demonstrated below, the rank of K10(M,R) can be determined by working with the matrix
1 1 2 8 24

0 1 4 8 20

1 3 4 12 40

0 1 6 16 36


.

Remark 3.1.9. Corollary 3.1.6 suggests a method by which the exact deflation of candidate basis

vectors for the block Krylov matrix induced by M and R can be detected using only information

encoded in matrices X(i), for i = 1, 2, ..., ℓ. Because the basis vectors for the block Krylov subspace

induced by M and R are useful only as auxiliary vectors for producing columns of Q, it is desirable

45



3.1. EXPLORING MATRICES IN CASE ONE FORM

to avoid manipulating vectors of size N while simultaneously ensuring proper deflation decisions

for the basis matrix of K(M,R, N0). Generalizing Proposition 3.1.2 and Corollary 3.1.6 enables

just this type of deflation decisions to be made using matrix Q.

3.1.3 Exact Deflation and the Column Space of W

All of the factorization results above assume prior knowledge of both the block grade k0 of the

block Krylov subspace induced byM andR as well as the elimination matrices {Ej}k0j=1 arising from

exact deflation on KN (M,R). These theoretic assumptions are not realistic when the strategy is to

avoid manipulating columns of KN (M,R) directly. An analogous factorization to Proposition 3.1.3

that requires no knowledge of the exact deflation patterns for KN (M,R) is given by

KN (M,R) =


Ŵ Û (1)

Ŵ Û (2)

...

Ŵ Û (ℓ)


,(3.15)

where Ŵ ∈ Cn0×m·N and Û (i) ∈ Cm·N×m·N is nonsingular, upper-triangular, and Toeplitz, for

i = 1, 2, ..., ℓ. In this case, the subblock partitions of Ŵ are given by

Ŵ1 = R, Â1 = c⊗ Ŵ1,

and

Ŵk+1 = FÂk, Âk+1 = c⊗ Ŵk+1 + (S ⊗ In0)Âk,

for k = 1, 2, ..., N−1. Unlike the coupled recursion offered in Proposition 3.1.4, this set of recursions

does not reference the elimination matrices {Ej}k0j=1. Similarly, matrices Û (i) can be defined using

the same recursive definition in the alternate proof to Proposition 3.1.3 sans reference to the

elimination matrices. This factorization suggests a connection between exact deflation of columns

of KN (M,R) and linear dependence of columns of Ŵ .

46



3.1. EXPLORING MATRICES IN CASE ONE FORM

Proposition 3.1.10. Denote the nth column of KN (M,R) as ân ∈ CN and the corresponding

column of Ŵ as ŵn for n = 1, 2, ...,mN . If ân+1 ∈ ⟨â1, â2, ..., ân⟩ then ŵn+1 ∈ ⟨ŵ1, ŵ2, ..., ŵn⟩ for

n = 1, 2, ...,mN − 1.

Proof: If ân+1 ∈ ⟨â1, â2, ..., ân⟩ for some n ∈ {1, 2, ...,mN −1}, there is a nonzero vector x ∈ Cn+1

such that

[
â1 â2 · · · ân ân+1

]
x = 0 ∈ CN(3.16)

and the last coefficient of x is nonzero. Let e1 be the first row of Iℓ. Multiply both sides of

this equation (3.16) by e1 ⊗ In0 yielding 0 =
[
ŵ1 ŵ2 · · · ŵn ŵn+1

]
y ∈ Cn0 . In this case,

y = U x with U = Û (1)(1 : n + 1, 1 : n + 1) ∈ C(n+1)×(n+1). Because U is upper-triangular

with nonzero diagonal coefficients and x ̸= 0, the entries of y must be nonzero. Specifically, the

last coefficient of y is nonzero. Thus, ŵn+1 can be written as a linear combination of vectors

{ŵj}nj=1. □

Exact deflation of columns inKN (M,R) implies linear dependence of the corresponding columns

of the candidates of Ŵ . By contraposition, if a column of Ŵ is linearly independent from previous

columns, then the corresponding column ofKN (M,R) will necessarily be linearly independent from

previous basis vectors for the deflated block Krylov matrix. The converse of Proposition 3.1.10 is

not true. Even if ŵn+1 is in the column span of

[
ŵ1 ŵ2 · · · ŵn

]
,

the corresponding vector ân+1 may not require exact deflation, as Example 3.1.8 illustrates. How-

ever, necessary and sufficient conditions for exact deflation of columns of the block Krylov matrix

KN (M,R) based on the linear dependence classification of ŵn are available by further exploring

Corollary 3.1.6.

To begin, consider the first block R = c⊗R of KN (M,R). The number of linearly dependent

columns of R is equal to the number of linearly independent columns of R since rn+1 ∈ ⟨r1, ..., rn⟩

if, and only if, c⊗rn+1 ∈ ⟨c⊗ r1, ..., c⊗ rn⟩ for n = 1, 2, ...,m−1. The full-rank factorization of R1

from the deflated Krylov matrix given in Corollary 3.1.6 is readily available. Assume Q1 ∈ Cn0×m1

is an orthonormal basis for the column space of R and let RE1 = Q1R̂1 with R̂1 upper-triangular

47



3.1. EXPLORING MATRICES IN CASE ONE FORM

and nonsingular. Define X
(i)
11 ∈ Cm1×m1 = ciR̂1 for i = 1, 2, ..., ℓ. Then

R1 = RE1 =


Q1X

(1)
11

...

Q1X
(ℓ)
11


The elimination matrix E1 ∈ Cm×m1 for R can be determined by working with R ∈ Cn0×m. This

is only true for the first block of KN (M,R).

Assume that the elimination matrices {Ej}kj=1 are known for some k = 1, 2, ..., k0 − 1 and

suppose the first k blocks of the deflated block Krylov matrix are given by

[
R1 MR2 · · · Mk−1Rk

]
=

(
Iℓ ⊗

[
Q1 Q2 · · · Qk

])




X

(1)
11 · · · X

(1)
1k

. . .
...

X
(1)
kk


...

X
(ℓ)
11 · · · X

(ℓ)
1k

. . .
...

X
(ℓ)
kk




where Rj = Rj−1Ej , Qj ∈ Cn0×wj and X

(i)
jt ∈ Cwj×mt for j, t = 1, 2, ..., k (3.14). The next block

MkRk+1 is created first by forming the product M(Mk−1Rk) and then identifying the elimination

matrix Ek+1. Suppose that Qk+1 ∈ Cn0×wk+1 is next block of orthonormal columns for the column

space of W corresponding to Ŵk+1. Define a set of candidate coefficients

48



3.1. EXPLORING MATRICES IN CASE ONE FORM





X̂
(1)
1,k+1

...

X̂
(1)
k,k+1

X̂
(1)
k+1,k+1


...

X̂
(ℓ)
1,k+1

...

X̂
(ℓ)
k,k+1

X̂
(ℓ)
k+1,k+1





=


Iℓ ⊗



QH
1

...

QH
k

QH
k+1




MkRk

A deflation condition in later blocks can now be given succinctly in terms of the matrix

X =





X
(1)
11 · · · X

(1)
1k X̂

(1)
1,k+1

. . .
...

...

X
(1)
kk X̂

(1)
k,k+1

X̂
(1)
k+1,k+1


...

X
(ℓ)
11 · · · X

(ℓ)
1k X̂

(ℓ)
1,k+1

. . .
...

...

X
(ℓ)
kk X̂

(ℓ)
k,k+1

X̂
(ℓ)
k+1,k+1




Since

[
Q1 · · · Qk Qk+1

]
has full column rank and

[
R1 MR2 · · · Mk−1Rk MkRk

]
= Iℓ ⊗

[
Q1 · · · Qk Qk+1

]
X,

exact deflation occurs on the columns of MkRk if an only if the matrix X is column rank deficient.

As discussed in Section 3.3, the columns ofX can be formed without use of an explicit inner product

and are much smaller than the columns of the block Krylov matrix KN (M,R) in applications

related to reduced-order modeling.

49



3.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

3.2 The Generic SEA Algorithm for Matrices in Case One Form

The multiple-input version of the Structure Exploiting Arnoldi (SEA) algorithm for

M = c⊗ F + S ⊗ In0 ∈ CN×N and R = c⊗R ∈ CN×m

will be presented in the Section 3.4 of this thesis. This section develops a generic single-input

Structure Exploiting Arnoldi algorithm for matrix M and single input vector R ∈ CN . This

algorithm will be adapted to include memory saving devices and a special subroutine to execute

the stop condition as discussed in Section 3.3.

Algorithm 8 Generic Single-Input Structure Exploiting Arnoldi (SEA)

Input: c, F, S, r in case one form 3.1.1.
Output: Orthonormal basis Qk for the space Sn+1 (3.6)
1. Compute q1 := r/∥r∥2, b1 := 1 and k = 1
2. Set â1 := c⊗ q1

3. for n = 1, 2, ..., until convergence do
4. Set q̂ := F ân and q̂n+1 := q̂
5. for i = 1, 2, ..., k do
6. hbi,n := q̂T

n+1qi

7. q̂n+1 := q̂n+1 − hbi,nqi

8. end for
9. Check if q̂n+1 is a basis vector for Sn+1 by evaluating ∥q̂n+1∥2

10. if q̂n+1 is a basis vector then
11. Set hn+1,n := ∥q̂n+1∥2, q̂n+1 := q̂n+1/hn+1,n and qk+1 := q̂n+1

12. Set bk+1 := n+ 1 and k := k + 1
13. else
14. Set hn+1,n := 1
15. end if
16. Set ân+1 :=

1
hn+1,n

(
c⊗ q̂+

(
S ⊗ In0

)
ân − ÂnH(1 : n, n)

)
17. if ân+1 ∈ col span

(
Ân

)
then

18. STOP
19. end if
20. end for

Remark 3.2.1. This generic version of the SEA algorithm produces an orthonormal basis of Sn for

a more general class of matrices than those that arise from the linearization of ℓth-order systems.

The specific algorithm used for model order reduction of higher-order systems will be presented in

Section 3.3.

50



3.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

Basic relations between quantities generated by the generic single-input Structure Exploiting

Arnoldi algorithm are readily available. Suppose the SEA algorithm 8 for matrices in case one form

runs in exact arithmetic through the end of n iterations of the outer for-loop. Let {kj}n+1
j=1 be a

finite monotonically increasing sequence with element kj defined to be the number of basis vectors

for Sj for j = 1, .., n+1. By design, k1 is stored in the initialization of the generic single-input SEA

algorithm and sequence element kj+1 is updated during the jth iteration of the outer for-loop, for

j = 1, 2, ..., n.

The projection matrix, Ĥn, is the (n+1)×n Hessenberg matrix whose coefficients are calculated

and stored in line 6, line 11, and line 14 of the SEA algorithm. Let

Ân+1 =
[
â1 â2 · · · ân ân+1

]
,

where â1 ∈ CN is calculated in the initialization and âj+1 ∈ CN is the auxiliary vector calculated in

the jth iteration of the SEA algorithm, for j = 1, 2, ...., n. Let k = kn+1 and suppose Qk ∈ Cn0×k is

the output of the SEA algorithm. By construction, the column vectors of Qk form an orthonormal

set. Define Eb as the (n + 1) × k matrix whose jth column is the bjth column of In+1, where bj

is the pointer stored in line 12 of the SEA algorithm, for j = 1, 2, ..., k. Let Q̂n+1 = QkE
T
b . The

matrix relations generated by the generic single-input SEA algorithm are given by

FÂn = Q̂n+1Ĥn,(3.17)

MÂn = Ân+1Ĥn.(3.18)

Matrix Ĥn is designed to be an (n+1)×n Hessenberg matrix with nonzero subdiagonal elements.

By Proposition 2.1.10, Ân forms a basis matrix for K(M,R, n) and there exists a nonsingular,

upper-triangular matrix Un such that

Ân =
[
R MR · · · Mn−1R

]
Un = An Un.(3.19)

where An is defined as in Proposition 3.1.4. The matrix Qk created and stored in the SEA algorithm

forms a basis for the space Sn+1 (3.6).

51



3.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

Theorem 3.2.2. Let M and R be in case one form. Suppose the generic single-input SEA al-

gorithm 8 runs in exact arithmetic with input data c, F, S, r through the end of n iterations of

the outer for-loop and produces exactly k = kn+1 basis vectors. Then the sequence of vectors

q1,q2, ...,qk forms an orthonormal basis of the space Sn+1 (3.6).

Proof: By construction, the columns of Qk are orthonormal. Upon initialization of the SEA

algorithm, q1 = w1/∥w1∥2. Also,

Q̂n+1Ĥn = FÂn = FAn Un = Wn+1En Un,

where Un is a nonsingular upper-triangular matrix and En ∈ C(n+1)×n is formed by deleting the

first column of In+1. The last equality is a consequence of the definition of Wn+1 by Proposition

3.1.4. Since Wn+1En = QkE
T
b ĤnU−1

n , any column of Wn+1 can be written as a linear combination

of the columns of Qk. □

Finally, the last result of this section connects the Structure Exploiting Arnoldi algorithm with

the Arnoldi algorithm explicitly.

Proposition 3.2.3. The generic single-input Structure Exploiting Arnoldi algorithm for matrices

in case one form with input data c, F, S, r stops at step n if, and only if, the Arnoldi algorithm

with matrix M = c⊗ F + S ⊗ In0 and starting vector R = c⊗ r stops at step n.

Proof: Suppose that the Arnoldi algorithm stops at step n. Then, K(M,R, n + 1) is an n-

dimensional space and if ak = Mk−1R, for k = 1, 2, ..., n + 1 as in Proposition 3.1.4, the vector

an+1 is contained in the column span of An. To show that the SEA algorithm stops, the first goal is

to establish that F ân ∈ span {q1,q2, ....,qkn} so that ∥q̂∥2 calculated in line 9 of the nth iteration

of SEA will be zero. Since there exists a nonsingular Un such that Ân = An Un,

F ân = FAnUn(1 : n, n) = Wn+1EnUn(1 : n, n),

by the definition for the matrix Wn+1 (3.8).

The vector wn+1 is the small space factor of the vector an+1. As is demonstrated in Proposi-

tion 3.1.10, since an+1 is in the range of An, wn+1 can be written as a linear combination of the

52



3.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

vectors w1,w2, ...,wn. However, by Theorem 3.2.2,

wi ∈ span {q1,q2, ....,qk}

for each i = 1, 2, ..., n. Thus, F ân must also be in the column span of Qk. In this case, hn+1,n = 1

by line 14.

The final trick for this direction of the proof is to recognize that ân+1 is in the column span

of Ân. By the SEA matrix equation (3.17), Mân = Ân+1Ĥn(1 : n + 1, n). Combining the matrix

relation (3.19) with the fact that hn+1,n = 1 and a little manipulation, notice that ân+1 = MAnx

with x = Un(1 : n, n) − UnĤn(1 : n, n). Each column of MAn is in the column span of An since

Arnoldi stops at step n and there exists y ∈ Cn such that MAnx = Any = ÂnU−1
n y = ân+1. This

is exactly the stop condition for the SEA algorithm given in line 17.

Conversely, if the SEA algorithm stops during the nth iteration of the outer for-loop, then

ân+1 is in the range of Ân. Moreover, the SEA matrix equation (3.18) holds for both the nth and

(n+ 1)st iteration. By Proposition 3.1.4,

col span
(
Ân

)
= K(M,R, n) and col span

(
Ân+1

)
= K(M,R, n+ 1).

After n iterations of the SEA algorithm, the matrix Ân has rank n. Thus, K(M,R, n) has dimen-

sion n and K(M,R, n) = K(M,R, n + 1) guaranteeing that the Arnoldi algorithm stops after n

iterations. □

Remark 3.2.4. In the nth iteration of the SEA algorithm, the vector

ân+1 =
1

α

(
Mân − Ânh

)
is updated in line 16 with α = hn+1,n and h = Ĥn(1 : n, n) ∈ Cn. Any scalar α ̸= 0 and

any h ∈ Cn will produce the correct basis Qk. The only requirement is that the Hessenberg

relation (3.18) need be maintained. For example, the Arnoldi scaling coefficient could be used for

the Hessenberg matrix associated with Ân+1 independent of the the orthogonalization coefficients

stored in Ĥn used to orthogonalize candidate basis vectors for Sn+1. Algorithm 8 attempts to

maintain a connection between the matrix Ân and the matrix Q̂n+1. However, the realization that

53



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

Ân+1 can be updated independent of the orthogonalization coefficients for Q̂n+1 suggests that the

single-input SEA algorithm 8 is really a template for a whole class of algorithms based on the case

one structure result (3.5).

3.3 Optimizing SEA for Higher-Order Linear Dynamical Systems

The generic single-input Structure Exploiting Arnoldi algorithm can be used to produce Padé-

type reduced-order models of large-scale ℓth-order linear dynamical systems at a fraction of the

cost as the Arnoldi-based reduction algorithm 4. Every aspect of this algorithm should be designed

to minimize computational and storage requirements with this application in mind. Comparing the

proposed SEA algorithm to the classic Arnoldi algorithm, the three main computational costs for

producing the data necessary to construct sufficiently accurate reduced-order models in both cases

include:

(1) The matrix-vector multiplication of the matrix M with the most recent basis vector for

K(M,R, n) to generate a candidate basis vector for K(M,R, n+ 1).

(2) The inner products used to project the new candidate basis vector onto the span of previous

basis vectors.

(3) The saxpy operations that update the new basis vector for K(M,R, n+1) by subtracting

scalar multiples of previous basis vectors for K(M,R, n).

Both the Arnoldi algorithm and the SEA algorithm produce new basis vectors for K(M,R, n+

1) via multiplication with M during each iteration since both algorithms rely on the deflated block

Krylov matrix induced by M and R in some form. The equivalent factorization of M in case

one form gives an improved method for executing this multiplication, but this improvement can

be realized in both the Arnoldi algorithm and the SEA algorithm. Similarly, the saxpy operations

that update the new candidate vectors of K(M,R, n + 1) must also occur in some fashion in the

SEA algorithm since multiplication by M without some “corrective” saxpy operations results in

extremely ill-conditioned numerical computations.

The major computational advantage offered by the SEA algorithm is with respect to the inner

products used to project new candidates onto the span of previous basis vectors. In the Arnoldi

algorithm, these inner products are executed on vectors of size N = n0 ·ℓ. In contrast, the analogous

54



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

inner products in the SEA algorithm manipulate vectors of size n0. This is ℓ times cheaper than the

orthogonalization process in the Arnoldi algorithm. There is a slight increase in storage require-

ments for the SEA algorithm because two different set of basis vectors must be stored: the basis

vectors for K(M,R, n+1) and the basis for Sn+1 (3.6). However, this trade-off yields more efficient

numerical computations and improved theoretic properties. Further, there are specific adaptations

that can be made to the SEA algorithm to produce a more efficient and faster moment-matching

model order reduction technique for ℓth-order linear dynamical systems. These adaptations are

designed to exploit the special structure of the matrices described in Proposition 3.1.2 with strictly

lower-triangular

S =



0 0 · · · 0

s21 0
. . .

...
...

. . .
. . . 0

sℓ,1 · · · sℓ,ℓ−1 0


.(3.20)

3.3.1 The Stop Condition via the Full-Rank Factorization

One opportunity to speed up the generic single-input SEA algorithm 8 is to develop a fast and

accurate method to check the stop condition in line 17 without manipulating vectors of size N .

Assume the SEA algorithm runs in exact arithmetic for n iterations on matrices in case one form

and that S is strictly lower-triangular (3.20). Let Ân have full column rank, let kj denote the

number of basis vectors for Sj for j = 1, 2, ..., n + 1 and let k = kn+1. Suppose β = {b1, b2, ..., bk}

is the set of pointers stored in line 12 and let δ = {1, ..., n, n + 1} − β. Denote the jth smallest

element of δ by dj for j = 1, ..., n− k+1 where di < dj if i < j. Recall that FÂn = Q̂n+1Ĥn (3.17)

and Q̂n+1 = QkE
T
b where the jth column of Eb ∈ C(n+1)×k is the bjth column of In+1 .

The contrapositive of Proposition 3.1.10 indicates that if

q̂n+1 =
1

hn+1,n

(
F ân − Q̂nĤn(1 : n, n)

)
is nonzero, the corresponding ân+1 is not in the range of Ân and no stop condition needs to be

checked. Only when q̂n+1 = 0 is it necessary to check the column rank of Ân+1. If q̂n+1 = 0 and

55



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

ân+1 is calculated in line 16, then Ân+1 can be written as

Ân+1 = (Iℓ ⊗Qk)X, with X =


X

(1)
n+1

...

X
(ℓ)
n+1

 ,

Qk ∈ Cn0×k and X
(i)
n+1 ∈ Ck×(n+1) for i = 1, 2, ..., ℓ, as is demonstrated in Section 3.1. Ân+1 is

column rank deficient if, and only if, the matrix X has linearly dependent columns. With a slight

modification of the update for ân+1, matrices X
(i)
n+1 are easily calculated such that the rank of X

may be quickly ascertained.

3.3.2 Optimizing Updates for the Columns of Ân+1

The update formula for ân+1 in line 16 is suboptimal in the sense that checking the rank of the

resulting X requires a workload comparable to the work saved by using inner products of size n0.

Instead, at every iteration, replace line 16 with the update

ân+1 = c⊗ q̂n+1 + (S ⊗ In0)Ân

(
Ĥn(2 : n, 1 : n)

)−1
en,(3.21)

where en is the last column of In and q̂n+1 is the (n+ 1)st column vector of Q̂n+1 = QkE
T
b . The

matrix version of this update is

Ân+1 = c⊗ Q̂n+1 + (S ⊗ In0)Ân

[
0
(
Ĥn(2 : n, 1 : n)

)−1
]
.

Multiplying both sides of this equation by the matrix Ĥn verifies that this modified update still

maintains the necessary Hessenberg relationship (3.18). As is demonstrated below, this update

formula guarantees

Ân+1 = (Iℓ ⊗Qk)


c1E

T
b

X
(2)
n+1

...

X
(ℓ)
n+1


.

Only when q̂n+1 = 0 will the stop condition need to be evaluated in which case the last column of

ET
b is 0 ∈ Ck. An equivalent method to check the stop condition in line 17 is readily available.

56



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

Lemma 3.3.1 ([BS05b]). Suppose that x1,x2, ...,xn ∈ C(ℓ·k) is a sequence of linearly independent

vectors with partition xi =
[
zTi pT

i

]T
where zi ∈ Ck and pi ∈ C(ℓ−1)·k. Assume that the sets

β = {bj}kj=1 and δ = {dj}n−k
j=1 form a partition of {1, 2, ..., n}. Suppose that the subsequence

{zbj}kj=1 is linearly independent and zdj = 0 for j = 1, 2, ..., n− k. For any vector x =
[
0T pT

]T
with 0 ∈ Ck and p ∈ C(ℓ−1)·k, x is in the span of {x1,x2, ...,xn} if, and only if, p is in the span of

{pd1 ,pd2 , ...,pdn−k
}.

Proof: If x ∈ span {x1,x2, ...,xn}, there exists scalars {αi}ni=1 such that x =
n∑

i=1
αixi and 0 =

n∑
i=1

αizi =
k∑

i=1
αbizbi . Because zb1 , ..., zbk are linearly independent, αbi = 0 for i = 1, ..., k. In other

words, p =
n−k∑
i=1

αdipdi and the proof is complete. □

The above result indicates that evaluating the stop condition during the nth iteration of the

SEA algorithm can be done by working with a sequence of n − k + 1 vectors with each of size

(ℓ− 1)k and k ≤ n+ 1 ≪ n0 < N for applications in reduced-order modeling. This is a significant

savings compared to manipulating vectors of size N = ℓ · n0.

3.3.3 Generating the X(i) Matrices

It is relatively inexpensive to generate matrices X
(2)
n+1,...,X

(ℓ)
n+1 corresponding to the modified

update (3.21). Since â1 = c⊗ q1, x
(i)
11 = ci for i = 1, 2, ..., ℓ. By definition of the sequence {kj}n+1

j=1 ,

after n− 1 iterations, there are kn basis vectors for Sn. Assume

Ân = Iℓ ⊗Qkn


c1E

T
b

X
(2)
n

...

X
(ℓ)
n


where the bjth column of ET

b ∈ Ckn×n is the jth column of Ikn . There are two possibilities

to consider for the nth iteration of the SEA algorithm. If q̂n+1 ̸= 0, then kn+1 = kn + 1 and

ân+1 = c⊗ q̂n+1 + (S ⊗ In0)Ân gn. Here gn is the last column of
(
Ĥn(2 : n+ 1, 1 : n)

)−1
. If ekn+1

57



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

is the kn+1st column of Ikn+1 , then q̂n+1 = Qkn+1ekn+1 . By properties of the Kronecker product

ân+1 = c⊗Qkn+1ekn+1 + (Iℓ ⊗Qkn)


ℓ∑

t=1
s1,ty

(t)

...
ℓ∑

t=1
sℓ,ty

(t)

 ,

with y(1) = c1E
T
b gn ∈ Ckn and y(i) = X

(i)
n gn ∈ Ckn for i = 2, ..., ℓ. Because s1j = 0 for all

j = 1, ..., ℓ by the assumption that S is strictly lower-triangular (3.20),
ℓ∑

t=1
s1ty

(t) = 0. In the case

where kn+1 ̸= kn, the proper update for the last column of X
(i)
n+1 is

X(i)(1 : kn + 1, n+ 1) =

0
ci

+


ℓ∑

j=1
si,jy

(j)

0

 ∈ Ckn+1

for i = 2, ..., ℓ while X(1)(1 : kn + 1, n+ 1) = c1ekn+1.

On the other hand, if q̂n+1 = 0, then kn+1 = kn. A similar argument to the one above indicates

that X(i)(1 : kn, n+1) =
ℓ∑

j=1
si,jy

(j) ∈ Ckn while X(1)(1 : kn, n+1) = 0 ∈ Ckn . In either case, these

formulas provide an accurate and relatively inexpensive method of producing the matrix factors

X
(i)
n+1. According to Lemma 3.3.1, the SEA algorithm stops if, and only if, q̂n+1 = 0 and

pn−kn+1 ∈ span {p1, ...,pn−kn} with pj =


X

(2)
n+1(:, dj)

...

X
(ℓ)
n+1(:, dj)

 ∈ C(ℓ−1)·kn ,(3.22)

for j = 1, 2, ..., n−kn+1. This check can be executed using the modified Gram-Schmidt algorithm,

the SVD algorithm or the rank-revealing QR factorization. The following subroutine generates the

coefficients for X(i)(1 : kn : n+ 1) and facilitates the evaluation of the equivalent stop condition.

Algorithm 9 Forming Candidate Coefficients for X(i)(1 : kn, n+ 1)

Input: Coefficients gn and matrices S, X
(i)
n for i = 1, ..., ℓ.

Output: Coefficients x(i) = X(i)(1 : kn, n+ 1) for i = 1, 2, ..., ℓ

1. Set yi := X
(i)
n gn for i = 1, 2, ..., ℓ

2. Set
[
x(1) x(2) · · · x(ℓ)

]
:=
[
y1 y2 · · · yℓ

]
ST

58



3.3. OPTIMIZING SEA FOR HIGHER-ORDER LINEAR DYNAMICAL SYSTEMS

3.3.4 Computationally Efficient Single-Input SEA Algorithm

The generic single-input SEA algorithm for matrices in case one form with strictly lower-

triangular S (3.20) can be restated with the alternative update for ân+1 (3.21). This enables

a faster algorithm of reduced-order modeling of higher-order linear dynamical systems with an

accelerated stop condition (3.22).

Algorithm 10 Specialized Single-Input SEA for Strictly Lower-Triangular S

Input: F, c, r and strictly lower triangular S in case one form 3.1.1.
Output: Orthonormal basis Qk for the space Sn+1 (3.6)
1. Set q1 := r/∥r∥2, b1 := 1, and k := 1

2. Set â1 := c⊗ q1 and x
(i)
11 := ci for i = 1, 2, ..., ℓ

3. for n = 1, 2, ... do
4. q̂n+1 := F ân
5. for i = 1, 2, ..., k do
6. hbi,n := q̂T

n+1qi

7. q̂n+1 := q̂n+1 − hbi,nqi

8. end for
9. Check if q̂n+1 is a basis vector for Sn+1

10. if q̂n+1 is a basis vector then
11. Set hn+1,n := ∥q̂n+1∥2, q̂n+1 := q̂n+1/hn+1,n and qk+1 := q̂n+1

12. Set X(i)(1 : k + 1, n+ 1) :=
[(
x(i)
)T

ci

]T
with x(i) from algorithm 9

13. Set bk+1 := n+ 1 and k := k + 1
14. else
15. Set X(i)(1 : k, n+ 1) = x(i) from algorithm 9

16. Evaluate equivalent stop check using {X(i)
n+1}ℓi=2 and {dj}n−k+1

j=1 (3.22).
17. if Large space is exhausted then
18. STOP
19. else
20. Set hn+1,n := 1 and dn−k+1 = n+ 1
21. end if
22. Set ân+1 := c⊗ q̂n+1 + (S ⊗ In0)Ân Ĥn(2 : n+ 1, 1 : n)−1 en
23. end if
24. end for

Remark 3.3.2. The alternative update for the auxiliary vector ân+1 (3.21) can be calculated

without forming the matrix (S ⊗ In0). Let gn be the last column of
(
Ĥn(2 : n, 1 : n)

)−1
and let

a(i) = Ân

(
(i− 1)n0 + 1 : i · n0, 1 : n

)
gn for i = 1, 2, ..., ℓ. Then set

[
y1 y2 · · · yℓ

]
= q̂n+1c

T +
[
a(1) a(2) · · · a(ℓ)

]
ST .

59



3.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

Finally, the alternative update is given by ân+1 =
[
yT
1 · · · yT

ℓ

]T
. This takes advantage of fast

matrix-matrix multiplication routines that can be executed quickly if parallelized BLAS subroutines

are available [Don02].

Remark 3.3.3. This computationally efficient version of the SEA algorithm uses the same Hes-

senberg matrix inversion trick introduced in the SOAR algorithm [BS05b]for any ℓth-order system

with ℓ ≥ 2. The improved SEA checks the stop condition by working with vectors of size (ℓ− 1)k

where k ≤ n + 1 ≪ n0 while the SOAR algorithm evaluates the stop condition by working with

vectors of size (ℓ− 1)n0 in the special case of ℓ = 2.

Remark 3.3.4. This improved version of the SEA algorithm designed for dimension reduction of

ℓth-order systems is similar to output of the SOAR algorithm [BS05b] which solves the special

ℓ = 2 case. However, the terminology used to describe the origins of each algorithm differs. The

SOAR algorithm relies on second-order Krylov subspaces, suggesting that suitable extensions of

Krylov subspaces form the theoretical underpinnings of structure exploiting algorithms. In contrast,

the SEA algorithm is based on the case one structure Proposition 3.1.3 illustrating that it is not

necessary to introduce terminology to describe extended Krylov subspaces. Instead, structure

exploiting algorithms should generate an orthonormal basis for the multiple copied subspace Sn

that arises in the factorization of any basis matrix for the nth-order Krylov subspace induced M

and R in case one form.

3.4 The Band SEA Algorithm for Matrices in Case One Form

The generic single-input version of the SEA algorithm is designed to process systems with a

single input vector. An analogous generic band version can be adapted for systems with multiple

inputs. The band SEA algorithm presented below yields an orthornormal basis for Sn (3.6) in

the case of a block of starting vectors. The subroutine band SEA start initializes the band SEA

algorithm by preprocessingR ∈ Cn0×m with a modified Gram-Schmidt orthogonalization to produce

an orthonormal basis for Sm1 given by Q1 =
[
q1 · · · qm1

]
. Part of this preprocessing includes the

determination of the proper elimination matrix E1 ∈ Cm×m1 and may also include the calculation

and storage of ρm ∈ Cm1×m such that R = Q1ρm. A basis for the column span of R = c ⊗ R is

given by
[
â1 · · · âm1

]
= c⊗

[
q1 · · · qm1

]
.

60



3.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

Algorithm 11 Generic Band Structure Exploiting Arnoldi

Input: c, F, S and R ∈ Cn0×m in case one form 3.1.1 and integer nmax > m.
Output: ONB Qk for Snmax (3.6)

1. Initialize Band SEA Algorithm: [Qm1 ,m1, Âm1 ] := band SEA start(c, R)
2. Set mc := m1, {bi := i}m1

i=1 and n := m1

3. while n < nmax do
4. Set q̂ := F ân−mc+1 and q̂n+1 := q̂
5. Set h := 0 ∈ Cn

6. for i = 1, 2, ..., k do
7. h(bi, 1) := q̂T

n+1qi

8. q̂n+1 := q̂n+1 − h(bi, 1)qi

9. end for
10. Set H̃(1 : n, n−mc + 1) := h
11. Decide if q̂n+1 is a basis vector.
12. if q̂n+1 is a basis vector then

13. Set H̃(n+ 1, n−mc + 1) := ∥q̂n+1∥2
14. q̂n+1 := q̂n+1/∥q̂n+1∥2 and qk+1 := q̂n+1

15. Set ân+1 :=
1

∥q̂n+1∥2

(
c⊗ q̂+

(
S ⊗ In0

)
ân−mc+1 − Ânh

)
16. Set bk+1 := n+ 1, k := k + 1 and n := n+ 1
17. else
18. Set â :=

(
c⊗ q̂+

(
S ⊗ In0

)
ân−mc+1 − Ânh

)
19. Decide if â ∈ range Ân

20. if Deflation should occur then
21. Set mc = mc − 1.
22. if mc = 0 then
23. STOP
24. end if
25. else
26. Set H̃(n+ 1, n−mc + 1) := 1, an+1 := â, and n := n+ 1
27. end if
28. end if
29. end while

Suppose that the band SEA algorithm 11 runs until mc = 0. Then n = N0 is the column size

of the deflated block Krylov matrix induced by M and R. Let

nj = m1 +m2 + · · ·mj(3.23)

for some j = 1, 2, ..., k0, where {mj}k0j=1 encodes the exact deflation pattern of the deflated block

Krylov matrix induced byM andR in case one form. Let Q̂1 = Q1 and Q̂i+1 =
[
q̂mi+1 · · · q̂mi+1

]
for i = 1, ..., j where q̂n+1 is the vector calculated in the while-loop of the band SEA algorithm for

n = m1, ..., nj+1 − 1. Suppose that Qi ∈ Cn0×wi stores the wi linearly independent columns of the

61



3.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

block Q̂i for i = 1, 2, ..., j + 1. In this case,

Q̂i = QiE
T
bi

where Ebi ∈ Cmi×wi is the deflated identity matrix Imi whose missing columns correspond to the

zero columns of Q̂i, for i = 1, 2, ..., j + 1.

Let Âi =
[
âmi−1+1 · · · âmi

]
∈ CN×mi for i = 2, ..., j+1 with ân+1 stored in the while-loop of

the band SEA algorithm for n = m1, ..., nj+1−1. Set Vnj+1 =
[
Â1 · · · Âj Âj+1

]
. The resulting

matrix equations for the band SEA algorithm are given by

F Vnj =
[
Q̂1 Q̂2 · · · Q̂j+1

]
H̃nj and MVnj = Vnj+1H̃nj ,(3.24)

where H̃nj ∈ Cnj+1×nj is a deflation-revealing Hessenberg matrix corresponding to the Krylov

subspace K(M,R, nj+1). By Proposition 2.1.11, Vnj forms a basis for K (M,R, nj). Moreover,

the output vectors {qi}ki=1 forms an orthonormal basis for Sn+1. The proof of this result follows

from a straight forward generalization of the analogous proof in Section 3.2.

Many of the computational improvements suggested to improve the single-input SEA for ap-

plications in model order reduction of higher-order linear dynamical systems can be adapted to

the band version. Assuming strictly lower triangular S ∈ Cℓ×ℓ (3.20), the band analog to the

alternative update (3.21) follows from a modification of H̃nj . Multiply both sides of the Band SEA

matrix equation (3.24) by

EBpj
=



E2 0 · · · 0

0 E3
. . .

...
...

. . .
. . . 0

0 · · · 0 Ej+1


,

and set Ĥn̂j
=
(
H̃njEBpj

)
∈ Cnj+1×n̂j with n̂j = nj+1 −m1. Then,

F Vnj EBpj
=
[
Q̂1 Q̂2 · · · Q̂j+1

]
Ĥn̂j

and the matrix Ĥn̂j
has subdiagonal bandwidth equal to m1 with Ĥn̂j

(m1 + i, i) > 0 for i =

1, 2, ..., n̂j . Moreover, the matrix Ĥn̂j
(m1 +1 : m1 + i, 1 : i) is nonsingular for i = 1, 2, ..., n̂j . Given

62



3.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE ONE FORM

0 ∈ Cn̂j×m1 and Gn̂j
=
(
Ĥn̂j

(m1 + 1 : m1 + n̂j , 1 : n̂j)
)−1

, the matrix equation for an alternative

update is

Vnj+1 = c⊗
[
Q̂1 Q̂2 · · · Q̂j+1

]
+ (S ⊗ In0)VnjEBpj

[
0 Gn̂j

]
.(3.25)

Multiplying both sides of this equation by Ĥn̂j
yields MVnjEBpj

= Vnj+1Ĥn̂j
.

The equivalent stop condition for this alternative update requires the construction of matrices

X(i) such that

[
Â1 Â2 · · · Âj

]
=
(
Iℓ ⊗

[
Q1 Q2 · · · Qj

])

c1E

T
b

X
(2)
nj

...

X
(ℓ)
nj


Subblock partitions for matrices X

(i)
nj are given in Section 3.1. The first m1 ×m1 diagonal blocks

for each X(i) is equal to ciIm1 for i = 1, ..., ℓ. Subsequent columns of X(i) can be calculated

using the column relationships illustrated in the alternative update formula (3.25). If S is strictly

lower triangular, then sj,t = 0 for j = 1, ..., ℓ and t = j, j + 1, ..., ℓ ensuring that the results of

Lemma 3.3.1 apply. While a block form of this update is convenient for stating the results, the

band SEA algorithm using alternate update equation (3.25) must generate matrix Q column by

column. The algorithm below gives the optimized band SEA method including proper treatment

of the equivalent stop condition using matrices X(i).

Remark 3.4.1. The band SEA algorithm 12 for reduced-order modeling of multiple-input higher-

order systems can be further optimized to decrease storage requirements and improve the numerical

behavior of this algorithm. Refinements of this algorithm come from exploring the structure of the

Hessenberg matrix Ĥn̂j
. Rows of Ĥn̂j

whose indices are stored by pointers {dj}
nj+1

j=1 will have a

single nonzero entry whose value will be one. Using a trick similar to the step-by-step solutions ob-

tained in backward substitution for solving upper-triangular linear systems, the unknown variables

corresponding to these “identity” rows may be eliminated when working with the inverse Ĥ−1
n̂j

. The

pseudo code below only hints at this trick. In the numerical results presented in Section 3.5, such

a modification improved performance for reduced-order modeling purposes.

63



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

Algorithm 12 Specialized Band SEA algorithm for Strictly Lower-Triangular S

Input: F, c, R ∈ Cn0×m 3.1.1, S strictly lower triangular, integer nmax > m.
Output: ONB Qk for Snmax (3.6)

1. Initialize Band SEA Algorithm: [Q1,m1, Â1] := band SEA start(c, R)

2. Set mc = m1, {bi = i}m1
i=1 , n := m1, X

(i)
m1 = ciIm1 ,

3. while n < nmax do
4. Set q̂n+1 := F ân−mc+1

5. Set tmp := 0 ∈ Cn

6. for i = 1, 2, ..., k do
7. tmp(bi, 1) := q̂T

n+1qi

8. q̂n+1 := q̂n+1 − tmp(bi, 1)qi

9. end for
10. Decide if q̂n+1 is a basis vector.
11. if q̂n+1 is a basis vector then

12. Set Ĥ(1 : n, n−m1 + 1) := tmp and Ĥ(n+ 1, n−m1 + 1) := ∥q̂n+1∥2
13. Set q̂n+1 :=

1
∥q̂n+1∥2 q̂n+1, qk+1 := q̂n+1, bk+1 := n+ 1 and Bpn−m1+1

:= n−mc + 1

14. Set gn−m1+1 = Ĥn(m1 + 1 : n+ 1, 1 : n−m1 + 1)−1 en−m1+1

15. Set ân+1 := c⊗ q̂n+1 + (S ⊗ In0)Ân(:, Bp)gn−m1+1

16. Set yi := X(i)(1 : k,Bp)gn−m1+1 and X(i)(1 : k + 1, n+ 1) :=

[
ℓ∑

t=1
si,ty

T
i ci

]T
17. Set k := k + 1 and n := n+ 1
18. else
19. Set gn−m1+1 = −

(
Ĥ(m1 + 1 : n, 1 : n−m1)

)−1
tmp(m1 + 1 : n, 1)

20. Set xi =
ℓ∑

t=1
si,t

(
X(t)(1 : k,Bp)gn−m1+1 +X(t)(1 : k, n−mc + 1)

)
21. Decide deflation using matrices {X(i)}ℓi=1, vectors {xi}ℓi=1 and pointers {dj}n−k+1

j=1

22. if Deflation should occur then
23. Set mc = mc − 1.
24. if mc = 0 then
25. STOP
26. end if
27. else
28. Set X(i)(1 : k, n+ 1) := xi

29. Set an+1 := c⊗ q̂n+1 + (S ⊗ In0)
(
Ân(:, Bp)gn−m1+1 + an−mc+1

)
30. Set Ĥ(1 : n, n−m1 + 1) := tmp and Ĥ(n+ 1, n−m1 + 1) := 1
31. Set dn−k+1 = n+ 1, Bpn−m1+1

:= n−mc + 1 and n := n+ 1
32. end if
33. end if
34. end while

3.5 Applications to Model Order Reduction

The Structure Exploiting Arnoldi algorithm for matrices in case one form enables moment-

matching reduced-order modeling that preserves the structure of higher-order linear dynamical

64



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

systems. The following is a model reduction technique relying on the specialized (band) SEA

algorithms developed Sections 3.3 and 3.4:

Algorithm 13 (Band) SEA-Based Dimension Reduction for Higher-Order Systems

Input: A general higher-order system (2.9) given by

Pℓ
dℓ

dtℓ
z(t) + Pℓ−1

dℓ−1

dtℓ−1
z(t) + · · ·+ P1

d

dt
z(t) + P0z(t) = Bu(t),

y(t) = Du(t) + Lℓ−1
dℓ−1

dtℓ−1
z(t) + · · ·+ L1

d

dt
z(t) + L0z(t),

Output: An equivalent reduced higher-order system

P̃ℓ
dℓ

dtℓ
z(t) + P̃ℓ−1

dℓ−1

dtℓ−1
z(t) + · · ·+ P̃1

d

dt
z(t) + P̃0z(t) = B̃u(t),

y(t) = Du(t) + L̃ℓ−1
dℓ−1

dtℓ−1
z(t) + · · ·+ L̃1

d

dt
z(t) + L̃0z(t),

1. Select s0 ∈ C s.t. P̂ = P (s0) =
ℓ∑

i=0
si0Pi is invertible and choose reduction dimension n.

2. Run n− 1 steps of the (Band) SEA algorithm with

M (i) = P̂−1

 ℓ−i∑
j=0

Pi+j

 , R = P̂−1B, c =


1
s0
s20
...

sℓ−1
0

 , S = −



0 0 0 · · · 0

1 0 0
. . .

...

s0 1 0
. . . 0

...
. . .

. . .
. . . 0

sℓ−2
0 · · · s0 1 0


for i = 1, 2, ..., ℓ and produce and orthonormal basis Qk for the space Sn.

3. Obtain the reduced order model for the original system by projection:

P̃i = QT
k PiQk, B̃ = QT

kB, L̃j = LjQk,(3.26)

for i = 1, 2, ..., ℓ and j = 0, 1, ..., ℓ− 1.

The matrices M (i) ∈ Cn0×n0 are never formed explicitly in the implementation of (band) SEA-

based reduction. Instead, a sparse LU-factorization

P̂ = P (s0) = P TLU QT

is calculated where P and Q are permutation matrices, L is lower-triangle with ones on the main

diagonal and U is upper-triangular with nonzero diagonal entries [Dav06]. Then, matrix-vector

multiplication of

F =
[
M (1) M (2) · · · M ℓ

]
= P̂−1

[
ℓ−1∑
j=0

P1+j

ℓ−2∑
j=0

P2+j · · · Pℓ

]

65



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

with a single vector v̂ proceeds using the equation

F v̂ = Q

(
U−1

(
L−1

(
P

([
ℓ−1∑
j=0

P1+j

ℓ−2∑
j=0

P2+j · · · Pℓ

]
v̂

))))
.

For many applications with sparse data matrices {Pi}ℓi=1, this equivalent method of multiplying

by F is quite fast due to sparse matrix-vector multiplication and sparse forward and backward

substitution.

Suppose that specialized (band) SEA algorithm runs for n−1 iterations and the output matrix

Qk is an orthonormal basis for Sn. If

Vn =



Qk 0 · · · 0

0 Qk
. . .

...
...

. . .
. . . 0

0 · · · 0 Qk


∈ CN×n1

with n1 = k · ℓ, then K(M,R, n) ⊆ range (Vn) , where matrices M and R (1.5) arise from

the Taylor series expansion of the transfer function coming from the linearization of the original

higher-order system. Theorem 2.4.1 guarantees that reduced-order models formed via projection

onto Vn (2.30) results in a Padé-type model of the original system. Because the columns of Qk are

orthonormal, the structure of the linearization matrices is preserved in the sense that

VH
n EVn =



Ik 0 · · · 0

0
. . .

. . .
...

...
. . . Ik 0

0 · · · 0 P̃ℓ


, VH

n AVn = −


0 −Ik · · · 0
...

. . .
. . .

...

0 · · · 0 −Ik

P̃0 P̃1 · · · P̃ℓ−1


,

while

VH
n B =


0
...

0

B̃


, LVn =

[
L̃0 · · · L̃ℓ−1

]
,

66



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

where B̃, P̃i, L̃j are defined above (3.26). Some tedious algebra demonstrates

Hn(s) = Ln(s0En −An)
−1Bn

=
(
L̃0 + sL̃1 + · · ·+ sℓ−1L̃ℓ−1

)(
P̃0 + sP̃1 + · · ·+ sℓP̃ℓ

)
B̃.

where En,An,Bn,Ln are given by projections onto Vn (2.30). The cost of forming the projections

B̃ = QH
k B, P̃i = QH

k PiQk and L̃j = LjQk is overhead compared with executing model reduction

using the (band) Arnoldi algorithm. However, the (band) Arnoldi algorithm does not produce a

reduced-order model that can be stated as a higher-order system. Further, the (band) Arnoldi

algorithm manipulates vectors of size N = n0 · ℓ while the SEA algorithm works with matrices of

size n0.

Numerical Examples

This subsection presents numerical results comparing the accuracy of three different model order

reduction techniques including SEA-based, SOAR-based, and Arnoldi-based model order reduction.

This work establishes the basic properties of the new, more general SEA-based technique. Numerical

implementations of the algorithms used for each experiment are based on the pseudo code presented

in this thesis. A total of four examples are presented including three experiments on single-input,

single-output higher-order systems and one experiment on a multiple-input, multiple-output higher-

order system.

Example 3.5.1. The first example illustrates the numerical results for the three reduced-order

modeling methods applied to a linear-drive multimode resonator structure [JCP98]. The original

system is a nonsymmetric second-order system (ℓ = 2) with state-space dimension n0 = 63 and a

single input vector (m = 1). The mass matrix P2 and the damping matrix P1 are both singular

indicating that the original higher-order system is a descriptor system. The stiffness matrix P0 has

condition number at O(1015) as measured in the 1-norm. The left column of Table 3.5.1 presents

Bode plots of the frequency response for the original system and the corresponding Bode plots for

two different reduced-order models with the reduction dimension n = 13. The reduction techniques

67



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

use the expansion point s0 = 2π × 105. The corresponding relative errors

|H(jω)−Hn(jω)|
|H(jω)|

with j =
√
−1 are shown in the right column of Table 3.5.1. The results indicate that SEA-based

model reduction is an alternative, more general method than SOAR-based reduced-order modeling,

both of which are superior to the Arnoldi-based method.

10
2

10
3

10
4

10
5

10
6

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Comparison of Bode plot for Original and 
 Reduced−Order Transfer Functions for Linear Drive Resonator Model

 

 

Exact

SEA

SOAR

Arnoldi

10
2

10
3

10
4

10
5

10
6

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error between exact and 
 Reduced−Order Model transfer function output

 

 

SEA

SOAR

Arnoldi

Table 3.5.1. Linear-drive multimode resonator structure: The left entry of this
table presents Bode plots of Linear-drive resonator for original system (black), SEA-
based reduced-order model (blue), SOAR-based reduced-order model (green) and
Arnoldi-based reduced-order model (red) for reduced dimension of n = 13. The
right entry of this table includes the relative error for these reduced models.

Example 3.5.2. This example illustrates numerical results for reduced-order modeling of a tor-

sional micromirror [CP02]. The original single-input (m = 1), second-order system (ℓ = 2) is

produced using a lumped finite-element analysis with state-space dimension n0 = 846. Symmetric

mass and damping matrices P2 and P1 have small elements with 1-norms ∥P2∥1 = O(10−8) and

∥P1∥1 = O(10−6). The nonsymmetrix stiffness matrix P0, on the other hand, has relatively large

elements with ∥P0∥1 = O(109). All data matrices in this example are ill-conditioned with 1-norm

condition number on the order of 1018. Bode plots of the frequency response for the original system

and corresponding reduced-order models are given in the left column of Table 3.5.2. The reduction

dimension used for these models is n = 28 and the selected expansion point is s0 = 2π × 104. The

corresponding relative errors between are shown in the right column of Table 3.5.2.

68



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

L
o
g

1
0
 o

f 
|H

(s
)|

Comparison of Bode plot for Original and 
 Reduced−Order Transfer Functions for Torsional MicroMirror Model

 

 

Exact

SEA

SOAR

Arnoldi

10
3

10
4

10
5

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error between exact and 
 Reduced−Order Model transfer function output

 

 

SEA

SOAR

Arnoldi

Table 3.5.2. Torsional micromirror: The left entry of this table presents Bode plots
of torsional micromirror for original system (black), SEA-based reduced-order model
(blue), SOAR-based reduced-order model (green), and Arnoldi-based reduced-order
model(red) for reduced dimension n = 28. The right entry of this table includes the
relative error for these reduced models.

Example 3.5.3. In the third example, model order reduction techniques are applied to a single-

input (m = 1), second-order system (ℓ = 2) modeling the Los Angeles University Hospital [ASG01].

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

Frequency (Hz)

L
o
g
1

0
 o

f 
|H

(s
)|

Comparison of Bode plot for Original and 
 Reduced−Order Transfer Functions for LA Hospital Building Model

 

 

Exact

SEA

SOAR

Arnoldi

10
−1

10
0

10
1

10
2

10
3

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error between exact and 
 Reduced−Order Model transfer function output

 

 

SEA

SOAR

Arnoldi

Table 3.5.3. Los Angeles (LA) University hospital building model: The left entry
of this table presents Bode plots of the LA Hospital Building model for original
system (black), SEA-based reduced-order model (blue), SOAR-based reduced-order
model (green), and Arnoldi-based reduced-order model(red) for reduced dimension
n = 24. The right entry of this table includes the relative error for these reduced
models.

69



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

The original system has state-space dimension n0 = 24, representing 8 floors, with three degrees

of freedom on each floor including displacements in both the x and y directions as well as rotation.

Matrix P2 is invertible in this case, leading to a system of second-order differential equations. By

multiplying the entire system by P−1
2 , an equivalent system arises with In0 being the scaling matrix

for second-order data. Motion in the first coordinate is measured by setting L0 = 0 and L1 ̸= 0.

The reduction dimension used for these models is n = 24 and the selected expansion point is

s0 = 1. The left column of Table 3.5.3 illustrates Bode plots of the frequency response for the

original system and corresponding reduced-order models while the relative errors are shown in the

right column of the same table.

Example 3.5.4. Numerical results for model order reduction applied to the multiple-input (m = 3),

multiple-output (p = 3) second-order (ℓ = 2) structural model of the Russian service module of

the International Space Station are illustrated in the final example of this section [CV02]. The

original system has state-space dimension n0 = 135 and comes from a system of second-order

differential equations, with P2 being nonsingular. These numerical simulations rely on expansion

point s0 = 3500 and reduction dimension n = 135. Table 3.5.4 gives the Bode plots corresponding

to each component of the 3 × 3 transfer function for the original system (black), the band SEA-

based reduced model (blue) and the band Arnoldi-based reduced model (red). All data shown in

the table below result from a single call to the specialized band SEA algorithm and a single call

to band Arnoldi algorithm. The relative errors for each component of the transfer functions for

both the band SEA-based reduced-order model and the band Arnoldi-based reduced-order model

are included below.

70



3.5. APPLICATIONS TO MODEL ORDER REDUCTION

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (1,1) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (1,2) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (1,3) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (2,1) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (2,2) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for entry (2,3) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (3,1) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for entry (3,2) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

L
o
g
1
0
 o

f 
|H

(s
)|

Bode plots for entry (3,3) of 
 Original, SEA−based, and Arnoldi−based Transfer Function 

 for International Space Station Model

 

 

Exact

SEA

Arnoldi

Table 3.5.4. International Space Station (ISS) model: The (i, j)th entry of this
table presents Bode plots of the (i, j)th entry of the transfer function generated by
the original system (black), band SEA-based reduced-order model (blue), and band
Arnoldi-based reduced-order model (red) for reduction dimension n = 135.

There is a substantial improvement offered by the specialized band SEA algorithm because

n = 135 is chosen to be equal to the state-space dimension of the higher-order system. For the

numerical tests presented here, the expansion point s0 = 3500 produced k = 135 basis vectors

for Sn, increasing the numerical accuracy of the reduced model. The corresponding relative errors

are shown in Table 3.5.4. The relative error between entry (i, j) of the original and reduced order

transfer functions is given in entry (i, j) below.

71



3.6. CONCLUSIONS

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (1,1) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (1,2) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (1,3) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (2,1) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (2,2) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (2,3) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (3,1) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (3,2) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (3,3) of transfer function 
 between exact and reduced higher−order systems

 

 

SEA

Arnoldi

Table 3.5.5. International Space Station model: The (i, j)th entry of this table
presents the relative error between entry (i, j) of transfer functions from the original
system, band SEA-based MOR (blue) and band Arnoldi-based MOR (red) corre-
sponding to each entry in Table 3.4 above.

3.6 Conclusions

This chapter introduces the SEA algorithm for efficient model order reduction of multiple-input

higher-order systems. To create this reduction technique, Chapter 3 begins with an analysis of the

structure of block Krylov subspaces induced by matrices in case one form from the perspective of

generating orthonormal basis of Sn (3.6). This study included an equivalent factorization of the

block Krylov matrix induced by M and R assuming no specific knowledge of the elimination ma-

trices {Ei}k0i=1 permitting the exact deflation patterns for KN (M,R) to be ascertained by working

with this equivalent full-rank factorization.

72



3.6. CONCLUSIONS

The corresponding generic single-input and generic band versions of the SEA algorithm suggest

a template for structure exploiting algorithms for matrices in case one form. As is shown in Theo-

rem 3.2.2 and Proposition 3.2.3, the most important aspects of these algorithms is the maintenance

of the (band) Hessenberg matrix relations. However, as the general template evinces, the (band)

Hessenberg matrix relating the columns of Q̂n to basis vectors Ân of K(M,R, n) (3.17) need not

be the same as the (band) Hessenberg update that relates the basis matrix Ân to matrix M (3.18).

One possible alteration to the generic Structure Exploiting Arnoldi algorithm is to rely on the

SOAR-type Hessenberg inversion trick to speed up the check for deflations. These adaptations

come in both single-input and band versions and improve the performance of the SEA algorithms

applied to model order reduction of large-scale higher-order linear dynamical systems. This permits

a more efficient treatment of Structure Exploiting Arnoldi-based model order reduction. Table 3.6

gives a synopsis of the contributions made by this work.

Table 3.6.1. Model Reduction Algorithm Comparison for Higher-Order Systems

SEA SOAR Arnoldi
Order of input system ℓ ≥ 2 2 1
Band version available ✓ × ✓

Higher-order realization of reduced system ✓ ✓ ×
Padé-type moment-matching property ✓ ✓ ✓
Orthogonalization using vectors of size n0 n0 N = n0 · ℓ

Exact deflation executed using vectors of size ≪ n0 n0 N

73



CHAPTER 4

The SEA Algorithm for Matrices in Case Two Form

The Structure Exploiting Arnoldi algorithm developed in this chapter provides an improved

dimension reduction technique for linearized systems of first-order integro-DAEs. Such systems

arise in VLSI interconnect analysis where the need for efficient dimension reduction methods is

omnipresent, at least as long as Moore’s law continues to hold. Most Krylov subspace-based

moment-matching reduction techniques used in this popular application area make trade-offs be-

tween accuracy, the preservation of important system properties, and efficiency in numerical com-

putations. As discussed in the introduction, a recent trend for dimension reduction of RCL circuits

has been to develop reduced models that maintain passivity as a key system property. The current

state-of-the-art technique for this purpose is the SPRIM algorithm [Fre04], [Fre11] with which

accurate, provably passive reduced-order models can be generated. However, this algorithm uses

a series of separate mechanisms to produce reduced-order models, sacrificing some efficiency in

numerical computations.

The Structure Exploiting Arnoldi algorithm presented in this chapter generates provably pas-

sive and reciprocal macromodels of multiport RCL circuits matching the same number of leading

moments as the SPRIM algorithm at a fraction of the computational cost. By relying on struc-

ture results for the factorization of block Krylov subspaces associated with linearized systems of

first-order integro-DAEs, SEA-based reduced-order models enjoy the same theoretic properties as

SPRIM-based models but can be generated using fewer computational steps.

The organization of this chapter is similar to that of Chapter 3. Section 4.1 develops general

structure results for block Krylov subspaces associated with linearized systems of first-order integro-

DAEs including an improved method of executing exact deflation without explicitly manipulating

columns of the block Krylov matrix. Section 4.2 describes a corresponding generic single-input

SEA algorithm for general matrices in case two form. Section 4.3 improves the computational

performance of this single-input SEA algorithm for applications in VLSI interconnect analysis and

74



4.1. EXPLORING MATRICES IN CASE TWO FORM

Section 4.4 presents band versions of the SEA algorithms for multiple input vectors. The fifth

section presents the model order reduction technique based on these algorithms including a review

of RCL circuit equations, a discussion of the properties of SEA-based dimension reduction and

numerical results demonstrating the effectiveness of this method. The final section of this chapter

summarizes the advantages of SEA-based model order reduction for systems of first-order integro-

DAEs.

4.1 Exploring Matrices in Case Two Form

Matrices in case two form are a generic class of structured matrices used to describe matrices M

and R associated with the transfer function H(s) (1.4) arising from linearized first-order integro-

DAEs [Fre05]. Block Krylov subspaces induced by matrices M and R have structure that can be

used to improve existing dimension reduction techniques.

Definition 4.1.1 (Freund [Fre05]). Let n0 and ℓ be natural numbers. Let {ni}ℓi=1 be a sequence

of positive integers and assume C(i) ∈ Cni×n0 for all i = 1, 2, ..., ℓ. Given N = n1 + n2 + · · · + nℓ,

let F =
[
M (1) M (2) · · · M (ℓ)

]
∈ Cn0×N where M (i) ∈ Cn0×ni for i = 1, ..., ℓ. Assume si ∈ C for

all i = 1, 2, ..., ℓ and let R ∈ Cn0×m. Matrices M and R are said to be in case two form if, and

only if,

(4.1)

M =


C(1)

C(2)

...

C(ℓ)


[
M (1) · · · M (ℓ)

]
+



s1In1 0 · · · 0

0 s2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 sℓInℓ


∈ CN×N ,

R =


C(1)

C(2)

...

C(ℓ)


R ∈ CN×m.

Moments of the Taylor series expansion of transfer function H(s) about s0 ∈ C (1.7) associated

with the linearization of a system of first-order integro-DAEs (2.12) can be expressed in terms of

matrices in case two form.

75



4.1. EXPLORING MATRICES IN CASE TWO FORM

Proposition 4.1.2 (Freund [Fre05]). Transform any system of first-order integro-DAEs (2.12),

with P−1 = F1GFH
2 (2.15), into its equivalent first-order system (2.19) using the appropriate

linearization matrices (2.24), (2.26). Suppose the matrix pencil Q(s) (2.14) is regular and choose

nonzero s0 ∈ C such that Q(s0) = Q0 is nonsingular. The matrices used for moment-matching

block Krylov subspace-based dimension reduction techniques are given by

(4.2)

M = (s0E − A)−1E =

 In0

1
s0
FH
2

[Q−1
0 P1 − 1

s0
Q−1

0 F1

]
+

0 0

0 1
s0
In2

 ,

R = (s0E − A)−1B =

 In0

1
s0
FH
2

Q−1
0 B.

Proposition 4.1.3 (Freund [Fre05]). Suppose a system of first-order integro-DAEs (2.12), with

P−1 = F1G
−1FH

2 (2.16), is transformed into its equivalent first-order equivalent (2.19) via the

appropriate linearization matrices (2.27), (2.28). If s0 ∈ C is chosen such that Q(s0) = Q0 is

invertible, then the matrices used for moment-matching block Krylov subspace-based dimension

reduction techniques are given by

(4.3)

M =

 In0

1
s0
G−1FH

2

[Q−1
0 P1 − 1

s0
Q−1

0 F1G
]
+

0 0

0 1
s0
In2

 ,

R =

 In0

1
s0
G−1FH

2

Q−1
0 B.

Block Krylov subspaces induced by matrices M and R in case two form contain multiple copies

of the same underlying subspace. Assume matrices M ∈ CN×N and R ∈ CN×m are in case two

form for the remainder of this chapter.

76



4.1. EXPLORING MATRICES IN CASE TWO FORM

Proposition 4.1.4 (Freund [Fre05]). Let V be any basis of the block Krylov subspaces induced

by M and R. Then, V can be factored as

V =


C(1)WU (1)

C(2)WU (2)

...

C(ℓ)WU (ℓ)


(4.4)

where W ∈ Cn0×N0 and U (i) ∈ CN0×N0 is upper-triangular with nonzero diagonal elements for each

i = 1, 2, ...ℓ.

A compact formulation of the matrix factor W in the case two factorization result (4.4) arises

by relating the individual blocks of the deflated block Krylov matrix induced by M and R (2.3) to

the corresponding blocks of W .

Proposition 4.1.5. Let m0 = m and suppose that Ej ∈ Rmj−1×mj is the appropriate elimination

matrix from the exact deflation process (2.1.4) for j = 1, 2, ..., k0. Initialize the coupled recursion

(4.5) W1 = RE1 ∈ Cn0×m1 , A1 =


C(1)

...

C(ℓ)

 Wk.

Define the (k + 1)st coupled recursion pair as

(4.6)

Wk+1 = FAkEk+1 ∈ Cn0×mk+1 ,

Ak+1 =


C(1)

...

C(ℓ)

Wk+1 +


s1In1

. . .

sℓInℓ

AkEk+1,

for k = 1, 2, ..., k0 − 1. The kth block of the deflated block Krylov matrix induced by M and R

(2.1.4) can be represented in the form

Mk−1Rk = Ak,(4.7)

for k = 1, 2, ..., k0

77



4.1. EXPLORING MATRICES IN CASE TWO FORM

Proof: This result follows by induction. For the initial case, A1 = R1 by definition. Assuming

Ak = Mk−1Rk, consider

Ak+1 =


C(1)

...

C(ℓ)

 Wk+1 +


s1In1

. . .

sℓInℓ

AkEk+1 = MkRk+1.

This is exactly what was to be shown. □

4.1.1 Alternative Proof of the Factorization Result

Proposition 4.1.4 can be proved using the recursive formulation of Wk (4.6).

Proof: Partition of the matrices W and U (i) just as in Subsection 3.1.1, for i = 1, 2, ..., ℓ. The

desired relation (4.4) holds true if, and only if,

Mk−1Rk =



C(1) 0 · · · 0

0 C(2) . . .
...

...
. . .

. . . 0

0 · · · 0 C(ℓ)


(
Iℓ ⊗

[
W1 W2 · · · Wk

])




U

(1)
1k
...

U
(1)
kk


...

U
(ℓ)
1k
...

U
(ℓ)
kk




,(4.8)

for k = 1, 2, ..., k0. Assuming Wk is defined as in Proposition 4.1.5 for k = 1, ..., k0, the kth block

column of the deflated block Krylov matrix induced by M and R is given by Mk−1Rk = Ak. Each

subblock of U (i) can be given recursively as
U

(1)
kk
...

U
(ℓ)
kk

 =


1
...

1

⊗ Imk
,


U

(i)
1k
...

U
(i)
k−1,k

 =


s1U

(1)
1,k−1
...

sℓU
(ℓ)
k−1,k−1

Ek,(4.9)

for k = 1, 2, ..., k0, j = 1, 2, ..., k − 1 and i = 1, 2, ..., ℓ. Induction on k demonstrates that the block

partitions of W and U (i) satisfy the structure relation for the basis matrix of the block Krylov

subspaces (4.4).

78



4.1. EXPLORING MATRICES IN CASE TWO FORM

For the base case of this inductive argument (k = 1),

R1 =


C(1)

...

C(ℓ)

RE1 =


C(1)

...

C(ℓ)

 (Iℓ ⊗W1)


U

(1)
11

...

U
(ℓ)
11

 .

Suppose that the structure relation for the basis matrix of the block Krylov subspaces induced by

matrices in case two form (4.4) holds for 1 < k < k0. Multiply this structure relation (4.4) from

the left by the matrix M and from the right by Ek+1 to produce

MkRk+1 =


C(1)

...

C(ℓ)

FAkEk+1 +


s1In1

. . .

sℓInℓ

AkEk+1.(4.10)

By the equivalent form of the the induction hypothesis (4.8) and matrix algebra, the matrix

MkRk+1 is given by


C(1)

...

C(ℓ)

Wk+1 +


C(1)

. . .

C(ℓ)


(
Iℓ ⊗

[
W1 · · · Wk

])



s1


U

(1)
1,k+1
...

U
(1)
k,k+1


...

sℓ


U

(ℓ)
1,k+1
...

U
(ℓ)
k,k+1




.(4.11)

The equivalent relation (4.8) holds for k + 1 by the definitions of U
(i)
k+1,k+1 for i = 1, 2, ..., ℓ, com-

pleting this proof. □

The column space of W will play an important role throughout the rest of Chapter 4 and it

will be convenient to refer to this space succinctly. To this end, let wi ∈ Cn0 be the ith column of

the matrix W ∈ Cn0×N0 for i = 1, 2, ..., N0. Let

Sn = ⟨w1,w2, ...,wn⟩ ⊆ Cn0 ,(4.12)

79



4.1. EXPLORING MATRICES IN CASE TWO FORM

for n = 1, 2, ..., N0.

4.1.2 Full-Rank Factorization

Any basis matrix V of the block Krylov subspace induced by M and R can be written using

smaller factors C(i), W and U (i) for i = 1, 2, ..., ℓ by Proposition 4.1.4. Suppose that the column

rank of the matrix product C(i)W is w
(i)
0 ≤ min{ni, n0}, for i = 1, 2, ..., ℓ. A full-rank structure

factorization of V can be written in terms of orthonormal basis for the column space of each C(i)W ,

for i = 1, 2, ..., ℓ.

Corollary 4.1.6. Let V be any basis of the block Krylov subspaces induced by M and R. Then,

V =



V (1) 0 · · · 0

0 V (2) . . .
...

...
. . .

. . . 0

0 · · · 0 V (ℓ)




X(1)

X(2)

...

X(ℓ)


,(4.13)

where the matrix V (i) ∈ Cni×w
(i)
0 has orthonormal columns and X(i) ∈ Cw

(i)
0 ×N0 is in row echelon

form for each i = 1, 2, ..., ℓ.

Proof: Let the basis matrix V be factored using matrices C(i) ∈ Cni×n0 , W ∈ Cn0×N0 and U (i) ∈

CN0×N0 for i = 1, 2, ..., ℓ (4.4). Suppose that the column rank of each matrix product C(i)W is

given by w
(i)
0 for i = 1, 2, ..., ℓ. Then, C(i)W = V (i)R̂(i), where the columns of V (i) ∈ Cni×w

(i)
0

form an orthonormal basis of the column space of C(i)W and R̂(i) ∈ Cw
(i)
0 ×N0 in row echelon form

encodes the linear dependence relationships between V (i) and C(i)W for i = 1, 2, ..., ℓ. This proof

is completed by setting X(i) = R̂(i)U (i) for i = 1, 2, ..., ℓ. □

A major difference between the case one factorization (3.5) and the case two factorization (4.4)

relates to the matrices C(i). For matrices in case one form, each entry of vector c ∈ Cℓ is nonzero.

In contrast, the matrix 

C(1) 0 · · · 0

0 C(2) . . .
...

...
. . .

. . . 0

0 · · · 0 C(ℓ)


80



4.1. EXPLORING MATRICES IN CASE TWO FORM

will have a nontrivial kernel in general. The following example illustrates that the kernels of

matrices C(i) affect the linear dependence relationship between the basis vectors of the block Krylov

subspaces induced by M and R and the columns of the matrix W .

Example 4.1.7. Let ℓ = 2, n0 = n1 = 3, n2 = 2 and N = n1 + n2 = 5. Suppose

C(1) =


1 0 0

0 1 0

0 0 0

 , C(2) =

1 0 −.5

0 1 0

 .

Let the matrices M (i) and starting vector r be given by

M (1) =


0 0 1

0 1 1

1 0 0

 , M (2) =


0 1

0 0

1 0

 , r =


1

0

0

 .

Let s1 = 2 and s2 = 3. The first three columns of the Krylov matrix induced by M and R can be

factorized, as suggested by Proposition 4.1.4, as



1 2 4

0 0 0

0 0 0

1 2 4

0 0 0


=



1 0 0

0 1 0

0 0 0

1 0 −.5

0 1 0



I2 ×


1 0 0

0 0 0

0 1 4






1 2 4

0 1 2

0 0 1

1 3 9

0 1 3

0 0 1


.

The analogous full rank factorization is given by

[
R MR M2R

]
=



1 0

0 0

0 0

0 1

0 0



 1 2 4

1 2 4

 .

81



4.1. EXPLORING MATRICES IN CASE TWO FORM

In this example, the grade of the Krylov subspace induced by matrix M and R is one while the

column rank of matrix factorW is two. An analogous example can never be constructed for matrices

in case one form, as Proposition 3.1.10 demonstrates.

4.1.3 Exact Deflation and the Column Space of W

Just as in Chapter 3, these initial factorization results require prior knowledge of both the block

grade k0 of the block Krylov subspace induced by M and R as well as the elimination matrices

{Ej}k0j=1 arising from exact deflation on KN (M,R). A structure exploiting algorithm that works

with matrices in case two form will need to be able to construct these elimination matrices without

manipulating columns of KN (M,R) directly. A factorization analogous to the result presented

in Proposition 4.1.4 that requires no knowledge of elimination matrices can be easily formed. Let

Ŵ =
[
Ŵ1 Ŵ2 · · · ŴN

]
where

Ŵ1 = R, Â1 =


C(1)

...

C(ℓ)

 Ŵ1,

and

Ŵk+1 = FÂk, Âk+1 =


C(1)

...

C(ℓ)

 Ŵk+1 +


s1In1

. . .

sℓInℓ

 Âk,

for k = 1, 2, ..., N − 1. Then

KN (M,R) =


C(1)Ŵ Û (1)

C(2)Ŵ Û (2)

...

C(ℓ)Ŵ Û (ℓ)


,(4.14)

where Û (i) ∈ Cm·N×m·N is nonsingular, upper-triangular, and Toeplitz for i = 1, 2, ..., ℓ and Ŵ ∈

Cn0×mN . The matrices Û (i) are defined as in alternative proof to Proposition 4.1.4, leaving out any

reference to the elimination matrices {Ej}k0j=1.

82



4.1. EXPLORING MATRICES IN CASE TWO FORM

Without further assumptions on matrices {C(i)}ℓi=1, linear dependence relations of the columns

of Ŵ have no connection to the linear dependence relations of columns of the matrix KN (M,R)

(2.1), as demonstrated in Example 4.1.7. However, a modest assumption on matrix C(1) gives a

result analogous to Proposition 3.1.10 for matrices in case two form.

Proposition 4.1.8. Suppose that C(1) has full column rank. Then exact deflation on a column of

KN (M,R) implies linear dependence of the corresponding column of Ŵ .

Proof: Let âj be the jth column of KN (M,R) for j = 1, 2, ...,mN . If ân+1 ∈ ⟨â1, ..., ân⟩ for some

n ∈ {1, 2, ...,mN − 1}, then there exists of a nonzero vector x ∈ C(n+1) such that

[
â1 · · · ân ân+1

]
x = 0 ∈ CN ,(4.15)

with xn+1 ̸= 0 and at least one nonzero coefficient xj ̸= 0 for j ∈ {1, 2, ..., n}. The columns of[
â1 · · · ân ân+1

]
can be factored as



C(1) 0 · · · 0

0 C(2) . . .
...

...
. . .

. . . 0

0 · · · 0 C(ℓ)


(
Iℓ ⊗

[
ŵ1 · · · ŵn ŵn+1

])


Û
(1)
n+1

Û
(2)
n+1

...

Û
(ℓ)
n+1


,(4.16)

where ŵj ∈ Cn0 is the jth column of Ŵ and Û
(i)
n+1 = U (i)(1 : n + 1, 1 : n + 1) for indices j =

1, 2, ..., n + 1 and i = 1, 2, ..., ℓ. Multiplying this factorization (4.16) on the left by the matrix[
In1 0 · · · 0

]
and on the right by nonzero x (4.15), notice that

[
ŵ1 · · · ŵn ŵn+1

]
y must

be in the kernel of C(1), where the vector

y = Û
(1)
n+1x.

Since Û (1) has a nonzero diagonal entries and x ̸= 0, y ∈ Cn+1 must also be nonzero with final

entry yn+1 ̸= 0. Because C(1) has full column rank, its null space contains only the zero vector

0 ∈ Cn0 , meaning ŵn+1 ∈ ⟨ŵ1, ŵ2, ..., ŵn⟩ . □

The observations above indicate that as long as C(1) has full column rank, any new basis

vector for the space Sn+1 (4.12) corresponds to a new basis vector for the block Krylov subspaces

83



4.1. EXPLORING MATRICES IN CASE TWO FORM

induced by M and R. In applications of the Structure Exploiting Arnoldi algorithm to model order

reduction of first-order integro-DAEs, the assumption that C(1) has full column rank is satisfied.

Assuming C(1) has full column rank, necessary and sufficient conditions for exact deflation of

columns of the block Krylov matrix KN (M,R) based on the linear dependence classification of the

columns of Ŵ can be constructed by extending Corollary 4.1.6. The elimination matrix E1 ∈ Cm×m1

for the first block can be determined by working with R ∈ Cn0×m since rn+1 ∈ ⟨r1, ..., rn⟩ if, and only

if, Crn+1 ∈ ⟨Cr1, ..., Crn⟩ for n = 1, 2, ...,m− 1, where CT =
[(
C(1)

)T (
C(2)

)T · · ·
(
C(ℓ)

)T ]T .

The full-rank factorization of R1 from the deflated Krylov matrix given in Corollary 4.1.6 is readily

available. Assume V
(i)
1 ∈ Cni×x

(i)
1 has orthonormal columns and C(i)RE1 = V

(i)
1 X

(i)
11 where the

x
(i)
1 × m1 matrix X

(i)
11 is in row echelon form for i = 1, 2, ..., ℓ and x

(i)
1 is the number of linearly

independent columns of C(i)RE1. Then

R1 = RE1 =


V

(1)
1 X

(1)
11

V
(2)
1 X

(2)
11

...

V
(ℓ)
1 X

(ℓ)
11


.

For some k = 1, 2, ..., k0 − 1, assume the elimination matrices {Ej}kj=1 are known and that the

first k blocks of the deflated block Krylov matrix are given by

[
R1 MR2 · · · Mk−1Rk

]
=



[
V

(1)
1 V

(1)
2 · · · V

(1)
k

]
X

(1)
11 · · · X

(1)
1k

. . .
...

X
(1)
kk


...

[
V

(ℓ)
1 V

(ℓ)
2 · · · V

(ℓ)
k

]
X

(ℓ)
11 · · · X

(ℓ)
1k

. . .
...

X
(ℓ)
kk




.

In this equation, V
(i)
j ∈ Cni×x

(i)
j (3.14), X

(i)
jt ∈ Cx

(i)
j ×mt for j, t = 1, 2, ..., k, and x

(i)
j is the number

of new basis vectors for C(i) W added by the jth block C(i)Ŵj . The next block MkRk+1 is created

84



4.1. EXPLORING MATRICES IN CASE TWO FORM

first by forming the product

M(Mk−1Rk)

and then identifying the matrix Ek+1 needed to form Rk+1 = RkEk+1.

Suppose that V
(i)
k+1 ∈ Cn0×x

(i)
k+1 is the next block of orthonormal columns for the column space

of C(i)W added by matrix the MkRk. Define a set of candidate projection coefficients


X̂

(1)
1,k+1
...

X̂
(1)
k,k+1

X̂
(1)
k+1,k+1


...

X̂
(ℓ)
1,k+1
...

X̂
(ℓ)
k,k+1

X̂
(ℓ)
k+1,k+1





=



(
Ṽ

(1)
k+1

)H
0 · · · 0

0
(
Ṽ

(2)
k+1

)H . . .
...

...
. . .

. . . 0

0 · · · 0
(
Ṽ

(ℓ)
k+1

)H


MkRk

where Ṽ
(i)
k+1 =

[
V

(i)
1 · · · V

(i)
k V

(i)
k+1

]
. Then, the matrix

[
R1 MR2 · · · Mk−1Rk MkRk

]
=



Ṽ
(1)
k+1 0 · · · 0

0 Ṽ
(2)
k+1

. . .
...

...
. . .

. . . 0

0 · · · 0 Ṽ
(ℓ)
k+1


X,

85



4.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE TWO FORM

where

X =




X

(1)
11 · · · X

(1)
1k X̂

(1)
1,k+1

. . .
...

...

X
(1)
kk X̂

(1)
k,k+1

X̂
(1)
k+1,k+1


...

X
(ℓ)
11 · · · X

(ℓ)
1k X̂

(ℓ)
1,k+1

. . .
...

...

X
(ℓ)
kk X̂

(ℓ)
k,k+1

X̂
(ℓ)
k+1,k+1




The matrix X is column rank deficient if, and only if, exact deflation occurs on the columns of

MkRk. The columns of X can be formed in each iteration of a structure exploiting algorithm

without use of an explicit inner product and these columns are much smaller than the columns of

the block Krylov matrix KN (M,R) in practice.

4.2 The Generic SEA Algorithm for Matrices in Case Two Form

The single-input SEA algorithm for matrices in case two form generates an orthonormal basis

for the space Sn+1 (4.12). Computational improvements for applications in reduced-order modeling

of systems of first-order integro-DAEs are discussed in Section 4.3. In the following statement of

the SEA algorithm, there are no explicit assumptions on the matrix C(1). For ease of reference, let

C =
[(
C(1)

)T (
C(2)

)T · · ·
(
C(ℓ)

)T ]T and define

S =



s1In1 0 · · · 0

0 s2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 sℓInℓ


.

86



4.2. THE GENERIC SEA ALGORITHM FOR MATRICES IN CASE TWO FORM

Algorithm 14 Generic Single-Input Structure Exploiting Arnoldi

Input: F,C, {si}ℓi=1, r in case two form 4.1.1.
Output: Orthonormal basis Qk for the space Sn+1 (4.12)
1. Compute q1 := r/∥r∥2 and b1 := 1
2. Set â1 := Cq1

3. for n = 1, 2, ..., until convergence do
4. Set q̂ := F ân and q̂n+1 := q̂
5. for i = 1, 2, ..., k do
6. hbi,n := q̂T

n+1qi

7. q̂n+1 := q̂n+1 − hbi,nqi

8. end for
9. Check if q̂n+1 is a basis vector for Sn+1 by checking ∥q̂n+1∥2

10. if ∥q̂n+1∥2 ̸= 0 then
11. Set hn+1,n := ∥q̂n+1∥2, q̂n+1 := q̂n+1/hn+1,n and qk+1 := q̂n+1

12. Set bk+1 := n+ 1 and k := k + 1
13. else
14. Set hn+1,n := 1
15. end if
16. Set ân+1 :=

1
hn+1,n

(
Cq̂+ Sân − ÂnH(1 : n, n)

)
17. if ân+1 ∈ range Ân then
18. STOP
19. end if
20. end for

The theoretic properties of the generic single-input Structure Exploiting Arnoldi algorithm for

case two matrices are similar to those of the analogous algorithm for case one matrices. Assuming

the single-input SEA algorithm for matrices in case two form runs in exact arithmetic through

the end of n iterations of the outer for-loop, the matrices Qk, Ân+1, Ĥn and pointers {bj}kj=1 play

similar roles as described in Section 3.2.

Specifically, let the jth column of the matrix Eb ∈ C(n+1)×k be the bjth column of the (n+1)×

(n+1) identity matrix, where bj is the pointer stored in line 12, for j = 1, 2, ..., k. If Q̂n+1 = QkE
T
b ,

then,

FÂn = Q̂n+1Ĥn,(4.17)

MÂn = Ân+1Ĥn.(4.18)

Again, Ĥn ∈ C(n+1)×n is a Hessenberg matrix with nonzero subdiagonal elements.

87



4.3. OPTIMIZING SEA FOR FIRST-ORDER INTEGO-DAES

Because Ân forms a basis matrix for K(M,R, n) by Proposition 2.1.10, there exists an upper-

triangular, nonsingular Un such that Ân = An Un, where An contains the first n columns of the

deflated block Krylov matrix. The columns of the matrix Qk form a basis for the multiple copied

subspace Sn+1.

Theorem 4.2.1. Suppose the single-input SEA algorithm for case two matrices runs in exact

arithmetic with input data C,F, {si}ℓi=1, r through the end of n iterations of the outer for-loop.

Assume that the matrix Q produced has exactly k = kn+1 columns. Then the sequence of vectors

q1,q2, ...,qk forms an orthonormal basis of the space Sn+1 (4.12).

By construction, the matrix Ân+1 forms a basis for the Krylov SubspaceK(M,R, n+1). Hence,

given the stop condition of the SEA algorithm for matrices in case two form is equivalent to the

Arnoldi stop condition.

Proposition 4.2.2. The generic single-input Structure Exploiting Arnoldi algorithm for matrices

in case two form with data C,F, S, r stops at step n if, and only if, the Arnoldi algorithm with

matrix M and starting vector R stops at step n.

Remark 4.2.3. The proofs of Theorem 4.2.1 and Proposition 4.2.2 follow from similar arguments

as the proofs given in Section 3.2. The key relationships necessary to establish these results are the

maintenance of the Hessenberg matrix relationships (4.17), (4.18). Many of the same observations

as made in Section 2.2 apply to the generic single-input SEA algorithm presented in this section.

Remark 4.2.4. This generic version of the single-input SEA algorithm for matrices in case two

form is a reformulation of the generic single-input SEA algorithm for matrices in case one form. In

the case two situation, matrix multiplication with C(i) is more expensive than scalar multiplication

with ci. On the other hand, the scalars si for matrices in case two form permit a much simpler

update formula than the matrix S in the case one situation.

4.3 Optimizing SEA for First-Order Intego-DAEs

The Structure Exploiting Arnoldi algorithm and the corresponding band SEA algorithm devel-

oped in Section 4.4 are intended to function as tools for model order reduction of large-scale systems

of first-order integro-DAEs. These algorithms are viable alternatives to existing techniques only if

they are designed to minimize computational requirements. The discussion offered at the start of

88



4.3. OPTIMIZING SEA FOR FIRST-ORDER INTEGO-DAES

Section 3.3 applies here. The computational savings offered by the SEA algorithm contrasted with

the Arnoldi algorithm come from the inner product calculations while the costs of matrix multipli-

cation with M and saxpy updates remain constant. When dealing with linearization matrices for

systems of first-order integro-DAEs, adaptations to the generic single-input SEA algorithm lead to

a more efficient and faster algorithm. For the rest of this chapter, assume that ℓ = 2, n1 = n0,

s1 = 0, C(1) = In0 and that matrices M and R are given by

M =

 In0

C(2)

[M (1) M (2)
]
+

0 0

0 s2In2

 , R =

 In0

C(2)

R.(4.19)

The matrices described in Propositions 4.1.2 and 4.1.3 exhibit such structure.

4.3.1 The Stop Condition via the Full-Rank Factorization

The stop condition in line 17 of the single-input SEA algorithm 14 does not lend itself to fast

and efficient computations, compared with existing techniques. However, the full-rank factorization

suggested in Proposition 4.1.6 provides an equivalent method for checking the rank of Ân+1. Assume

the SEA algorithm for special matrices in case two form (4.19) runs in exact arithmetic for n

iterations. Given matrices Q̂n+1 and C(2), define the functions

k : {1, 2, ..., n+ 1} → {1, 2, ..., n+ 1},

σ : {1, 2, ..., n+ 1} → {0, 1, 2, ..., n+ 1}

such that k(j) = kj and σ(j) = σj represent the number of linearly independent columns of Q̂j

and C(2)Q̂j respectively for j = 1, 2, ..., n + 1. Suppose k = kn+1 and β = {b1, b2, ..., bk} is the set

of pointers stored in line 12. Let δ = {1, ..., n, n + 1} − β, where the jth smallest element of δ is

dj for j = 1, ..., n − k + 1 and di < dj if i < j. Recall that Q̂n+1 = QkE
T
b and the jth column of

Eb ∈ C(n+1)×k is the bjth column of In+1. Just as in Section 3.3, the k nonzero columns of ET
b are

the column vectors of Ik and FÂn = Q̂n+1Ĥn (4.17).

As demonstrated below, as long as Ân+1 forms a basis matrix for K(M,R, n), then

Ân+1 =

Qkn+1 0

0 Vσn+1

X(1)
n+1

X
(2)
n+1

 ,

89



4.3. OPTIMIZING SEA FOR FIRST-ORDER INTEGO-DAES

with Vσn+1 and X
(i)
n+1 of appropriate sizes for i = 1, 2, ..., ℓ. The matrices Qkn+1 and Vσn+1 have

orthonormal columns forming a basis for the column spaces Q̂n+1 and C(2)Q̂n+1 respectively. As-

suming the matrices X
(i)
n+1 are available within the algorithm, the stop condition in line 17 can be

checked by working with the matrix

X =

X(1)
n+1

X
(2)
n+1

 .

The last column of Ân+1 is linearly dependent on early columns if, and only if, the matrix X is

column rank deficient. A slight restructuring of the SEA algorithm ensures that the rank of matrix

X is easily ascertained.

4.3.2 Optimizing Updates for the Columns of Ân+1

Given the extra assumptions on the input matrices M and R (4.19), an efficient way to check

the stop condition in line 17 of the single-input SEA algorithm 14 is to redesign the procedure to

take advantage of the full-rank factorization suggested in Proposition 4.1.6. The generic update for

columns of the matrix Ân+1 stated in line 16 guarantees the resulting basis matrix Qk spans the

proper space Sn+1. However, this update is not a prudent choice from the perspective of optimizing

the stop condition check in line 17. A better update for this purpose is given by

ân+1 =

 In0

C(2)

 q̂n+1 +

0 0

0 s2In2

 Ân Ĥn(2 : n, 1 : n)−1en(4.20)

where en is the nth column of In. The resulting matrix equation is

Ân+1 =

 In0

C(2)

 Q̂n+1 +

0 0

0 s2In2

 Ân

[
0 Ĥn(2 : n, 1 : n)−1

]
.(4.21)

Multiplication by Ĥn verifies that MÂn = Ân+1Ĥn and the columns of Ân+1 span the Krylov

subspace K(M,R, n+1) according to Proposition 2.1.10. This alternative update for vectors ân+1

affords a relatively inexpensive method to check the stop condition during the nth iteration. As is

clear from the matrix equation for the alternative update (4.21), X
(1)
n+1 = ET

b , greatly simplifying

90



4.3. OPTIMIZING SEA FOR FIRST-ORDER INTEGO-DAES

the procedure to check the rank of X. All that is needed is an efficient technique to generate the

matrix X(2).

4.3.3 Generating the Matrix X(2)

Matrix X(2) can be generated as a byproduct of the forming an orthonormal basis for C(2)Q̂n+1.

Since the null space of C(2) will be nontrivial in general, it may be the case that C(2)q1 = 0. Suppose

that the first nonzero column of the n2 × (n + 1) matrix C(2)Q̂n+1 is the jth column C(2)q̂j for

some j = 1, 2, ..., n. If j > 1, the first j − 1 columns of Ân+1 can be factorized using only the

matrix Q̂j−1 whose columns must be nonzero if Âj−1 has full column rank. To factorize Âj , set

x
(2)
11 = · · · = x

(2)
1,j−1 = 0 and x

(2)
1j = ∥C2q̂j∥2. Prior to the nth iteration of the SEA algorithm,

assume all data from the equivalent factorization

Ân =

Qkn 0

0 Vσn

 ET
b

X
(2)
n


is available within the algorithm with X

(2)
n ∈ Cσn×n. Then, the alternative update of ân+1 (4.20)

during the nth iteration of the SEA algorithm is given by

ân+1 =

 In0

C(2)

 q̂n+1 +

Qkn 0

0 Vσn

 0

y2


with y2 = s2X

(2)
n Ĥn(2 : n+ 1, 1 : n)−1 en. There are two possibilities to consider.

If q̂n+1 = 0, then σn+1 = σn and X(2)(:, 1 : n + 1) = y2 ∈ Cσn . On the other hand, if

q̂n+1 ̸= 0, no stop condition needs to be checked. Given C(2)q̂n+1 is in the column space of Vσn ,

then σn+1 = σn and there is a vector x such that

C(2)q̂n+1 = Vσnx(4.22)

Setting X
(2)
n+1 = x + y2 ∈ Cσn ensures a proper update of X(2). If C(2)qn+1 is not in the column

span of Vσn , then σn+1 = σn + 1. Using a modified Gram-Schmidt orthogonalization, there is a

91



4.3. OPTIMIZING SEA FOR FIRST-ORDER INTEGO-DAES

vector x ∈ Cσn and scalar α such that

C(2)q̂n+1 =
[
Vσn vσn+1

]x
α

(4.23)

The final column X(2) in this case is updated asx
α

+

y2

0

 .

Since X
(1)
n+1 = ET

b ∈ Ckn×(n+1), according to Lemma 3.3.1, the matrix Ân+1 is column rank deficient

if, and only if,

pn−kn+1 ∈ span {p1, ...,pn−kn},(4.24)

with pj = X
(2)
n+1(:, dj) ∈ Cσn for j = 1, 2, ..., n − kn+1 + 1. This check can be executed using the

modified Gram-Schmidt algorithm, the SVD algorithm or the rank-revealing QR factorization. The

following subroutine generates the coefficients for X(2)(1 : σn, n+ 1) and facilitates the evaluation

of the equivalent stop condition.

Algorithm 15 Form Candidate Coefficients for X(2)(1 : σn, n+ 1)

Input: Vectors gn, scalar s2, matrix X
(2)
n , and vector x from either (4.22) or (4.23).

Output: Coefficients X(2)(1 : σn, n+ 1) := x(2).

1. Set y2 := X
(i)
n gn for i = 1, 2, ..., ℓ

2. Set x(2) := x+ s2y2

4.3.4 Computationally Efficient Single-Input SEA Algorithm

The single-input SEA algorithm for matrices in case two form can be restated as indicated

below. This efficient version of the SEA algorithm uses the alternative update for ân+1 (4.20)

and the accelerated stop condition (4.24). New columns of matrices X
(2)
n+1 are formed during the

nth iteration based on the subroutine presented above. For simplicity, it is assumed that C(2)q1 is

nonzero in this algorithm. The more general case in which the kernel of C(2) affects the initialization

can be coded using an if-statement to properly initialize the first column of Vσ and the corresponding

first row of X(2). A modified Gram-Schmidt style subroutine is used in this algorithm and will be

referred to as MGS.

92



4.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE TWO FORM

Algorithm 16 Specialized Single-Input Structure Exploiting Arnoldi

Input: F,C(2)s2, r in specialized case two form 4.19.
Output: Orthonormal basis Qk, Vσ

1. Set q1 := r/∥r∥2, b1 := 1, and k := 1

2. Set α := ∥C(2)q1∥2 and v1 := C(2)q1/α

3. Set â1 := c⊗ q1 and x
(2)
11 := α for i = 1, 2, ..., ℓ

4. for n = 1, 2, ... do
5. q̂n+1 := F ân
6. for i = 1, 2, ..., k do
7. hbi,n := q̂T

n+1qi

8. q̂n+1 := q̂n+1 − hbi,nqi

9. end for
10. Check if q̂n+1 is a basis vector for Sn+1

11. if q̂n+1 is a basis vector then
12. Set hn+1,n := ∥q̂n+1∥2, q̂n+1 := q̂n+1/hn+1,n and qk+1 := q̂n+1

13. Run MGS on (Vσn , C
(2)qk+1) to produce vσn+1 and X(2)(1 : σn+1, n+ 1)

14. Set bk+1 := n+ 1, k := k + 1
15. else
16. Generate proper X(2)(1 : k, n+ 1)

17. Evaluate equivalent stop check using X
(2)
n+1 and {dj}n−k+1

j=1 (4.24).
18. if Large space is exhausted then
19. STOP
20. else
21. Set hn+1,n := 1 and dn−k+1 = n+ 1
22. end if
23. Set

ân+1 :=

[
In0

C(2)

]
q̂n+1 +

[
0 0
0 s2In2

]
Ân Ĥn(2 : n+ 1, 1 : n)−1 en

24. end if
25. end for

4.4 The Band SEA Algorithm for Matrices in Case Two Form

The implementation of the generic band version of the SEA algorithm for matrices in case two

form is almost identical to algorithm 11 from Section 3.4. The only difference is that matrix-matrix

multiplication with C =
[(
C(1)

)T (
C(2)

)T · · ·
(
C(ℓ)

)T ]T replaces the Kronecker product with

c and the scalars {si}ℓi=1 must be accounted for properly. In this form, the band SEA algorithm

produces an orthonormal basis for the multiple copied subspace Sn (4.12). The assumption that

C(1) has full column rank must be enforced to ensure the results of Proposition 4.1.8 still apply.

The subroutine band SEA start initializes the band SEA algorithm by preprocessing R ∈ Cn0×m

with a modified Gram-Schmidt orthogonalization to produce Q1 ∈ Cn0×m1 . The corresponding

93



4.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE TWO FORM

first block of basis vectors for the column span of R is generated using the update Â1 = CQ1.

All other details of this generic band SEA algorithm for matrices in case two form follow from an

identical analysis as that provided in Section 3.4.

Given the additional structure assumptions (4.19) arising from applications to reduced-order

modeling of first-order integro-DAEs, the generic band SEA algorithm can be modified to improve

efficiency. The alternative update yielding a faster deflation detection mechanism for this subclass

of matrices is given by

Vnj+1 =

 In0

C(2)

[Q̂1 Q̂2 · · · Q̂j+1

]
+

0 0

0 s2In2

VnjEBpj

[
0 Gñj

]
(4.25)

where {ni}k0i=1, {Q̂i}j+1
i=1 , Vnj , EBpj

, Ĥnj and Gñj are defined for special case two structure (4.19)

analogously to the definitions given in in Section 3.4. Multiplying both sides of this equation

by Ĥnj yields MVnjEBpj
= Vnj+1Ĥnj . The equivalent stop condition for this alternative update

requires the construction of matrices X(2) such that

[
â1 â2 · · · ân ân+1

]
=
(
Iℓ ⊗

[
q1 q2 · · · qk

])c1ET
b

X
(2)
n+1


Block entry (1, 1) of X(2) is a σm1 × m1 upper-triangular matrix in row echelon form and comes

from a factorization of C(2)Q1 = Vσm1
X

(2)
11 , where the columns of Vσm1

are orthonormal and span

the range of C2Q1. Subsequent columns of X(2) can be calculated using the column relationships

illustrated in the alternative update formula (4.25). Because s1 = 0, Lemma 3.3.1 applies. The band

SEA algorithm using alternate update equation (3.25) processes special case two data in a column-

by-column manner ensuring accurate exact deflation and improved efficiency. This algorithm, given

below, is one possible optimization of the generic band SEA process and relies on the equivalent

stop condition using matrix X(2). Numerical results for applications of this specialized band SEA

algorithm in reduced-order modeling of first-order integro-DAEs are presented in the next section.

94



4.4. THE BAND SEA ALGORITHM FOR MATRICES IN CASE TWO FORM

Algorithm 17 Specialized Band Structure Exploiting Arnoldi

Input: C(2), F, s2 ∈ C, R ∈ Cn0×m in specialized case two form 4.19and integer nmax > m.
Output: ONB Qk for Snmax (4.12)

1. Initialize Band SEA Algorithm: [Q1, Vσm1
, X2,m1, Â1] := band SEA start(C(2), R)

2. Set mc = m1, {bi = i}m1
i=1 , n := m1

3. while n < nmax do
4. Set q̂n+1 := F ân−mc+1

5. Set tmp := 0 ∈ Cn

6. for i = 1, 2, ..., k do
7. tmp(bi, 1) := q̂T

n+1qi

8. q̂n+1 := q̂n+1 − tmp(bi, 1)qi

9. end for
10. Decide if q̂n+1 is a basis vector.
11. if q̂n+1 is a basis vector then

12. Set Ĥ(1 : n, n−m1 + 1) := tmp and Ĥ(n+ 1, n−m1 + 1) := ∥q̂n+1∥2
13. Set q̂n+1 :=

1
∥q̂n+1∥2 q̂n+1, qk+1 := q̂n+1, bk+1 := n+ 1 and Bpn−m1+1

:= n−mc + 1

14. Set gn−m1+1 = Ĥn(m1 + 1 : n+ 1, 1 : n−m1 + 1)−1 en−m1+1

15. Set ân+1 :=

[
In0

C(2)

]
q̂n+1 +

[
0 0
0 s2

]
Ân(:, Bp)gn−m1+1

16. Run MGS on (Vσn , C
(2)qk+1) to produce vσn+1 and X(2)(1 : σn+1, n+ 1)

17. Set k := k + 1 and n := n+ 1
18. else
19. Set gn−m1+1 = −

(
Ĥ(m1 + 1 : n, 1 : n−m1)

)−1
tmp(m1 + 1 : n, 1)

20. Set x2 = s2
(
X(2)(1 : k,Bp)gn−m1+1 +X(2)(1 : k, n−mc + 1)

)
21. Decide deflation using matrix X

(2)
n , vectors x2 and pointers {dj}n−k+1

j=1

22. if Deflation should occur then
23. Set mc = mc − 1.
24. if mc = 0 then
25. STOP
26. end if
27. else
28. Set X(2)(1 : k, n+ 1) := x2

29. Set ân+1 :=

[
In0

C(2)

]
q̂n+1 +

[
0 0
0 s2

](
Ân(:, Bp)gn−m1+1 + an−mc+1

)
30. Set Ĥ(1 : n, n−m1 + 1) := tmp and Ĥ(n+ 1, n−m1 + 1) := 1
31. Set dn−k+1 = n+ 1, Bpn−m1+1

:= n−mc + 1 and n := n+ 1
32. end if
33. end if
34. end while

95



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

4.5 Applications to Model Order Reduction

The SEA algorithm for matrices in case two form is devised as a tool for dimension reduction

of RCL circuit models arising in VLSI interconnect analysis [Fre00], [CPO02], [BHtM11]. The

VLSI interconnect network is a system of tiny wires that transmit electronic signals between tens

of millions of devices embedded in today’s integrated circuits. During the design phase for these

circuits, numerical simulations are used to analyze circuit behavior and correct possible architecture

flaws before the circuit is fabricated in silicon [She96]. The entire manufacturing process, from

the determination of design specifications to the printing of the completed electronic circuit is

implemented with circuit simulation in mind. The history and development of computer aided

design tools for VLSI synthesis and analysis is connected to the development of mathematical

algorithms for accurate circuit modeling [Rue86].

Electronic circuit simulation is the art of modeling the behavior of electronic devices using math-

ematical equations. In general, models used to simulate integrated circuits are large-scale, sparse

systems of nonlinear time-dependent differential-algebraic equations (DAEs) [VS83], [FF95b].

Numerical computations of time-integrals for these systems are often prohibitive due to the enor-

mous dimensionality of the complete system of equations. However, integrated circuits contain

large subcircuits, such as the VLSI interconnect wires, that contribute only linear equations to the

entire system of DAEs. By replacing the linear subsystems of equations with accurate reduced-

order models having much smaller state-space dimension, time integration of the reduced, complete

system via numerical methods becomes feasible. It is with this strategy in mind that reduced-order

modeling of linear DAEs, such as those arising as RCL models of the VLSI interconnect, becomes

important.

The topology of linear circuits is often modeled as a graph with the circuit elements repre-

sented as edges and the connections between these elements represented as nodes [Deo74], [VS83],

[Ogr94], [FF95b]. Physical laws that govern electrical systems are introduced as mathematical

equations to describe the behavior of entire linear circuits. The three types of physical laws used

to form the system of equations for linear circuits include Kirchoff’s current law (KCL), Kirchoff’s

voltage law (KVL), and branch constituent relations (BCRs). While KCLs and KVLs depend only

96



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

on the connectivity of the circuit, the BCRs describe the functioning of each physical circuit el-

ement. Linear RCL circuits are modeled using only ideal resistors, capacitors, inductors, current

sources and voltage sources with corresponding BCRs given as linear equations.

Combining a description of every circuit element with the topology of the entire linear circuit,

the associated system of differential-algebraic equations are stated directly in terms of the three

types of physical laws mentioned above. For linear circuits with thousands of ideal elements, the

large-scale, sparse linear systems of time-invariant differential-algebraic equations that result are

formulated by most circuit simulation software packages. Design engineers need only to specify a

circuit’s netlist, a typeset list encoding all relevant information about the electronic circuit. Given

this netlist, the electronic design automation software of choice executes the rest of the analysis.

4.5.1 Creating Matrices in Case Two Form from RCL Circuits

Techniques to generate descriptor systems from an RCL circuit can be found in the literature

on this subject [Fre03b], [Fre04], [BMS05], [Fre08], [Fre11], [LSF11], [BHtM11]. For the sake

of completeness, these methods are reviewed here. In this exposition, it is assumed that only ideal

current sources are connected to the ports of a given RCL circuit. Starting with a circuit’s netlist,

there are a series of four steps to create the mathematical model to which the SEA algorithm can

be applied:

(1) Formulate the circuit equations using the lumped element approach

(2) Express the entire circuit using the sparse tableu formulation

(3) Eliminate as many circuit variables as possible using modified nodal analysis

(4) Form the input matrices to the SEA algorithm

Begin by transforming the netlist into a directed graph (digraph) model of the original RCL

circuit. Let N denote the set of all nodes and E as the set of all edges. Each n ∈ N represents the

wire connection between different circuit elements while each e ∈ E represents a physical circuit

element such as capacitors, resistors, inductors or current sources. The direction of each edge

corresponds to the reference directions chosen for each circuit element, with the reference direction

for each current source being the direction of current flow and all other reference directions being

chosen to satisfy the passive sign convention. Using this encoding, let G(N , E) be the digraph

representation of the RCL circuit corresponding to the specified netlist. This directed graph has an

97



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

associated incidence matrix Ã ∈ C|N |×|E| whose row and column indices correspond to the nodes

and edges of G, respectively. Individual coefficients of this incidence matrix are given by

aik =


1 if reference direction of element matching edge ek leaves node ni,

−1 if reference direction of element matching edge ek enters node ni,

0 otherwise.

(4.26)

While the matrix Ã encapsulates the topological information of the physical circuit, it is rank

deficient since the rows sum to zero by the definition of the coefficients of this matrix. In order

to transform the incidence matrix into a full-rank version, choose one of the nodes ng ∈ N as the

datum (or ground) node and assume the voltage at that node is zero. Form the reduced incidence

matrix A by deleting the row corresponding to this ground node from the original incidence matrix

Ã. This gives rise to a new index set N0 = N −{ng}. As discussed in the literature on graph theory

(theorem 9-6, [Deo74]), the reduced incidence matrix has full row rank, with rank (A) = |N0|.

Let v : [t0,∞) → R|N0| be the vector of node voltages at all non-datum (non-ground) nodes,

where the jth entry vj(t) represents the voltage at node j for j = 1, 2, ..., |N0|. The voltage of the

ground node is assumed to be zero and is used as a reference to measure all other node voltages.

Let iE(t) from [t0,∞) to R|E| be the vector whose kth element is the current running through the

circuit element corresponding to edge ek. Finally, let vE(t) from [t0,∞) into R|E| denote the vector

whose kth entry is the voltage across the circuit element corresponding to edge ek.

Choose indices for the columns of A such that edges corresponding to circuit elements of the

same type are grouped together, inspiring the column partition

A =
[
Ac Ar Al Ai

]
.

Matrix Ac ∈ R|N0|×nc represent all edges corresponding to capacitors, where nc is the number of

capacitors specified in the circuits netlist, while Ar,Al, and Ai are defined analogously for the

edges corresponding to resistors (r), inductors (l) and current sources (i). The row indices of

98



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

vector-valued functions iE and vE should be chosen in same ordering as the columns of A so that

iE(t) =


ic(t)

ir(t)

il(t)

ii(t)


, vE(t) =


vc(t)

vr(t)

vl(t)

vi(t)


.

In this case vc : [t0,∞) → Rnc is the vector-valued function describing the voltages across each

capacitor while ic : [t0,∞) → Rnc describes the current passing through each capacitor. Similar

definitions hold for the other partitions corresponding to resistors, inductors and current sources.

In this index mapping, similar elements are lumped together, giving rise to the name of the lumped

element approach.

The next stage of the model generation process is the sparse tableau formulation method to

represent the modeled RCL circuit completely by a set of linear and differential equations. Both

Kirchhoff’s current law and Kirchhoff’s voltage law can be formulated using the matrix A with the

complete list of KCLs given by

A iE = Acic +Arir +Alil +Aiii = 0(4.27)

and the complete list of KVLs given as

ATv = vE ⇐⇒ AT
c v = vc, AT

r v = vr, AT
l v = vl, AT

i v = vi.(4.28)

The final system of equations that completely determining the given linear circuit are formed via

the BCRs governing the behavior of each physical circuit element and are state succinctly using

the matrix equations

vr(t) = R · ir(t), ic(t) = C · d

dt
vc(t), vl(t) = L · d

dt
il(t).(4.29)

In these relations, R and C are diagonal matrices with positive entries. Diagonal entries of R

represent the resistances of corresponding ideal resistors while the diagonal entries of C encode

capacitances of the corresponding ideal capacitors in the circuit schematic. The entries of matrix

99



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

L are inductances and, if necessary, mutual inductances. In general, L is a symmetric semidefinite

matrix. If there are no mutual inductances, L is diagonal with positive entries.

The long list of linear differential equations resulting from the sparse tableau formulation

method are as sparse as possible and no elimination of variables has occurred. The input vec-

tor ii(t) gives the waveforms provided by all current sources for t ≥ t0 and is controlled by the

design engineer.

The third step in the process of creating matrices in case two from from a given RCL circuit

is known as the modified nodal analysis formulation method and condenses the long list of sparse

tableau equations by eliminating as many variables as possible. By combining the KVL equations

(4.28) and the BCRs,

ic(t) = C
d

dt
AT

c v(t), ir(t) = R−1AT
r v, il(t) = L−1AT

l

t∫
t0

v(τ)dτ.

Introducing notation E11 = AcCAT
c , A11 = −ArR

−1AT
r , and making the appropriate substitutions

into the matrix KCL equations (4.27) yields

E11
d

dt
v(t) +A11v(t) +AlL

−1AT
l

t∫
0

v(τ)dτ = −Aiii,(4.30)

L
d

dt
il(t) = AT

l v(t),(4.31)

where the inductor equation has been explicitly reintroduced to the system without an integral.

The output of this system is the vector whose entries are the voltage gains across each current

sources given by

AT
i v(t) = vi(t).

This system of integro-differential-algebraic equations comprises a concise description of the RCL

circuit equations.

The final step is to translate these circuit equations into a form directly amenable to the SEA

algorithm for matrices in case two form. Define the state-space vector, system input and system

100



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

output as

x(t) =

v(t)
il(t)

 , u(t) = −ii(t) y(t) = vi(t),

respectively. The corresponding linearization matrices for this system are given by

E =

E11 0

0 L

 , A = −

 A11 Al

−AT
l 0

 , B =

Ai

0

 , L = BT .(4.32)

Notice that since C, R, and L are symmetric positive semi-definite, with

E ⪰ 0 and A+AT ⪰ 0.(4.33)

The RCL circuit equations can then be written as a descriptor system of first-order linear time-

invariant DAEs in state-space form (2.19). Applying the Laplace transform with the assumption

of zero initial condition to this system, the associated transfer function (1.4) is given by

H(s) = BT (sE − A)−1 B.(4.34)

The factorized matrix pencil

sE − A =

Q(s) Al

0 sL

 In0 0

−1
sL

−1AT
l Inl

(4.35)

is regular if, and only if, the matrix pencilQ(s) = sE11 + A11 +
1
sAlL

−1AT
l is regular. Also, the

transfer function H(s) can be written using one of two equivalent forms

BT (sE − A)−1B = AT
i

(
sE11 +A11 +

1

s
AlL

−1AT
l

)−1
Ai.

101



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

Assuming s0 ∈ C is chosen such that the matrix pencil Q(s0) = Q0 is invertible, notice

M = (s0E − A)−1E =

 In0 0

1
s0
L−1AT

l Inl

Q−1
0 − 1

s0
Q−1

0 AlL
−1

0 1
s0
L−1

E11 0

0 L

 ,(4.36)

R = (s0E − A)−1B =

 In0 0

1
s0
L−1AT

l Inl

Q−1
0 − 1

s0
Q−1

0 AlL
−1

0 1
s0
L−1

Ai

0

 .(4.37)

The appropriate data matrices in case two form can be read from this factorization for input into

the SEA algorithm.

4.5.2 Properties of SEA-Based Dimension Reduction of RCL Circuits

The Structure Exploiting Arnoldi algorithm for matrices in case two form can be used to produce

reduced-order models of systems of first-order integro DAEs arising from RCL circuit equations.

By translating a given RCL circuit into the matrices in case two form as suggested above, the

corresponding model order reduction technique relies on the (band) SEA algorithm for matrices in

case two form to generate an associated reduced-order.

Algorithm 18 (Band) SEA-Based Dimension Reduction for RCL Circuit Equations

Input: An RCL circuit with only current sources given in linearized state-space form
Output: An equivalent reduced-order system
1. Select s0 ∈ C s.t. Q0 = Q(s0) nonsingular and choose reduction dimension n.
2. Run n− 1 steps of the SEA algorithm with[

C(1)

C(2)

]
=

[
In0

− 1
s0
L−1AT

l

]
,

[
M (1) M (2)

]
=
[
Q−1

0 E11 Q−1
0 Al

]
s1 = 0, s2 =

1

s0
.

and produce orthonormal basis Qkn and Vσn .
3. Obtain the reduced order model for the original system by projection:

Ẽ11 = QT
knE11Qkn , L̃ = V T

σn
LVσn , Ã11 = QT

knA11Qkn , Ãl = QT
knAlVσn , Ãi = QT

knAi.

As before, the matrices M (1) and M (2) are never formed explicitly in the implementation of (band)

SEA-based reduction. Instead, by calculating a sparse LU factorization

Q0 = Q(s0) = P TLU QT ,

the matrix-vector multiplication with F =
[
M (1) M (2)

]
proceeds as expected.

102



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

Assume that the (band) SEA algorithm runs for n−1 iterations and the output matrix Qk and

Vσ are orthonormal basis for the appropriate spaces. Let

Vn =

Qk 0

0 Vσ

 ∈ CN×n1 .(4.38)

Then K(M,R, n) ⊆ range (Vn) and the reduced-order models formed via projection onto Vn (2.30)

results in a Padé-type model of the original system by Theorem 2.4.1. If the expansion point s0 is

chosen such that s0 ∈ R (a real number), then SEA models match twice as many moments as is

guaranteed by Theorem 2.4.1. In most applications, s0 is chosen as a real number to avoid complex

arithmetic.

Theorem 4.5.1. Let s0 ∈ C and let A, E ,B,L and D be the linearization matrices for the system of

first-order integro-DAEs associated with an RCL circuit (4.32). Let M and R be matrices in case

two form (4.36) and suppose Vn (4.38) is generated using the specialized band SEA algorithm 17.

Let n = n(j) = m1 +m2 + · · ·+mj for some 1 ≤ j ≤ k0 (2.4). Then, the first 2j moments in the

expansions of H(s) (4.34) and Hn(s) (1.9) are identical with

Hn(s) = H(s) +O
(
(s− s0)

2j
)
.

The proof of this result follows using the same logical arguments as the proof of Theorem 3 in

the SPRIM paper [Fre04] which essentially demonstrates that the linearization matrices associated

with RCL circuits exhibit J-Hermitian structure [Fre08]. The fact that the basis Vn produced by

the SEA algorithm maintains the block structure of E and A through reduction follows because

VT
n EVn =

Ẽ11 0

0 L̃

 , VT
n AVn = −

 Ã11 Ãl

−ÃT
l 0

 , VT
n B =

Ãi

0

 .

This structure preservation is a crucial property of SEA-based reduced-order modeling that guaran-

tees a higher moment-matching property than the analogous (band) Arnoldi reduction algorithm 5.

In addition to higher accuracy, these projection-based reduced-order models maintain important

system characteristics of RCL circuits such as passivity and reciprocity. It is well known that a

103



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

linear dynamical system is passive if the transfer functionH(s) associated with the system is positive

real [AV06]. Positive real transfer functions satisfy the following three properties

i. H(s) has no poles in C+ = {s ∈ C| Re (s) > 0}

ii. For all s ∈ C, H(s) = H(s)

iii. For all s ∈ C+ and x ∈ Cm, Re (xHH(s)x) ≥ 0

Transfer functions of SEA-inspired reduced-order model are positive real and the corresponding

systems are passive.

Theorem 4.5.2. Suppose the assumptions of Theorem 4.5.1 hold. Then, the SEA-based reduced-

order models is passive.

The proof to this theorem can be found in the literature on passive reduced-order modeling

[Fre99]. Due to the structure of the linearization matrices, the transfer function associated with

this system can be stated in the form

BT
n (s0En −An)

−1Bn = ÃT
i

(
sẼ11 + Ã11 +

1

s
ÃlL̃

−1ÃT
l

)−1
Ãi,

as can be easily observed from a factorization of matrix pencil sEn − An analogous to the factor-

ization of sE − A (4.35).

4.5.3 Numerical Experiments

The final subsection of this chapter presents numerical results comparing the accuracy of SEA-

based reduced-order modeling with SPRIM-based reduced-order modeling. These simulations are

meant to demonstrate the basic properties of the proposed (band) SEA-based reduction technique.

Numerical implementations of the algorithms used for each experiment are based on the pseudocode

presented in this thesis.

Example 4.5.3. This example illustrates numerical results for SEA and SPRIM applied to a finite-

element model of a shaft. This is one of the many systems that can be reduced by recognizing the

equivalence between RCL circuits and mechanical systems [Bro07] such as in the modeling and

simulation of MEMS devices. The original single-input (m = 1), single-output (p = 1) system of

first-order integro-DAEs is such that n1 = 400 = n2 and N = 800. Bode plots of the frequency

104



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

response for the original system (black), the SEA-based reduced model (blue) and the SPRIM-based

reduced model (green) are given in the left column of Table 4.5.3.

0 100 200 300 400 500 600 700 800 900 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for Original, SEA−based, and SPRIM−based 
 Transfer Function for the Mechanical System Model

 

 

Exact

SEA

SPRIM

10
0

10
1

10
2

10
3

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in between transfer function of 
 exact and reduced higher−order systems

 

 

SEA

SPRIM

Table 4.5.1. Mechanical system model: The left entry of this table presents Bode
plots of the mechanical system model for the original system (black), SEA-based
reduced-order model (blue), and SPRIM-based reduced-order model (green) for re-
duced dimension n = 20. The right entry of this table includes the relative error for
the SEA-based model (blue) and the SPRIM-based model (green).

The reduction dimension used for these models is n = 15 and the selected expansion point is

s0 = π × 103. The relative errors are shown in the right column of Table 4.5.3.

Example 4.5.4. The numerical results presented in this second example are generated applying

both SEA- and SPRIM-based reduced-order modeling to a PEEC discretization [Rue74] of an

electromagnetic problem. This RCL circuit consists of a single resistive source that drives the

circuit, 2100 capacitors and 6990 inductive couplings. The circuit is formulated as a multiple-

input (m = 2), multiple-output (p = 2) system of first-order integro-DAEs is such that n1 = 136,

n2 = 172 and N = 308. Bode plots of the frequency response for the original system (black), the

SEA-based reduced model (blue) and the SPRIM-based reduced model (green) are given in Table

4.5.4.

105



4.5. APPLICATIONS TO MODEL ORDER REDUCTION

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for  entry (1,1) of Original, SEA−based, 
 and SPRIM−based Transfer Function for the PEEC Model

 

 

Exact

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for  entry (1,2) of Original, SEA−based, 
 and SPRIM−based Transfer Function for the PEEC Model

 

 

Exact

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for  entry (2,1) of Original, SEA−based, 
 and SPRIM−based Transfer Function for the PEEC Model

 

 

Exact

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

L
o

g
1

0
 o

f 
|H

(s
)|

Bode plots for  entry (2,2) of Original, SEA−based, 
 and SPRIM−based Transfer Function for the PEEC Model

 

 

Exact

SEA

SPRIM

Table 4.5.2. PEEC circuit model: Entry (i, j) of this table presents Bode plots
of the mechanical system model for entry (i, j) of the transfer function associated
with the original system (black), the SEA-based reduced-order model (blue), and
the SPRIM-based reduced-order model (green) for reduction dimension n = 136.

As is evident, a reduction dimension of n = 136 is sufficient to match each entry of the 2 × 2

transfer function over the frequency range of interest. The selected expansion point is s0 = 2π×109

in this case. The corresponding relative errors for each entry of the transfer function are shown in

the right column of Table 4.5.4.

106



4.6. CONCLUSIONS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (1,1) between transfer function of 
 exact and reduced higher−order systems

 

 

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (1,2) between transfer function of 
 exact and reduced higher−order systems

 

 

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (2,1) between transfer function of 
 exact and reduced higher−order systems

 

 

SEA

SPRIM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

R
e

la
ti
v
e

 e
rr

o
r 

|H
(s

) 
−

 H
n

(s
)|

 /
 |
H

(s
)|

Relative error in entry (2,2) between transfer function of 
 exact and reduced higher−order systems

 

 

SEA

SPRIM

Table 4.5.3. PEEC Circuit model: Entry (i, j) of this table presents the relative
error between entry (i, j) of the exact transfer function and entry (i, j) of the trans-
fer function arising from the SEA-based reduced-order model (blue) as well as the
relative error between entry (i, j) of the exact transfer function and entry (i, j) of
the transfer function arising from the SPRIM-based reduced-order model (green)
for reduction dimension n = 136.

4.6 Conclusions

Chapter 4 develops the Structure Exploiting Arnoldi algorithm for matrices in case two form

as an alternative to the SPRIM algorithm for reduced-order modeling of RCL circuits with only

current sources. Table 4.6.1 demonstrates that SEA-based models can be generated at a fraction of

the cost of the corresponding SPRIM-based models. Each data point in the table below represents

the single execution of the corresponding block Krylov subspace technique used to generate the

graphs in Section 4.5. These run times, measured in seconds, focus on the block Krylov subspace

technique and do not consider data loading, pre-processing, post-processing, nor are any necessary

107



4.6. CONCLUSIONS

projections used to form the reduced-order models considered. It is important to note that the post-

processing required by the SPRIM algorithm necessary to generate the proper orthonormal bases

is not included in this comparison. No such post-processing is necessary for SEA-based dimension

reduction, offering additional savings than those suggested below. A machine with an Intel Core 2

Duo processor and 1GB RAM was used to generate these results.

Table 4.6.1. Run Time Comparison (in Seconds) between SEA and SPRIM

SEA SPRIM
Mechanical System Model 0.05 0.13

PEEC Model 0.40 0.47

The generic single-input and band SEA algorithms for matrices in case two form give templates

for creating basis for the multiple copied subspace associated with block Krylov subspaces induced

by matrices in case two form. In order to utilize these techniques for reduced-order modeling

of large-scale RCL circuits, specific adaptations to the general algorithms are made to reflect the

more specialized structure of linearized first-order integro-DAEs. These adaptations are available in

both single-input and band versions and improve computational efficiency resulting in the speed up

offered by SEA-based reduced-order modeling compared with the SPRIM based models. Table 4.6.2

illustrates that the properties of SEA-based reduced-order models match SPRIM-based models.

Table 4.6.2. Model Reduction Algorithm Comparison

SEA SPRIM Arnoldi
Provably Passive ✓ ✓ ✓
# Moments Match 2j 2j j

Higher-Order Realization ✓ ✓ ×

108



CHAPTER 5

Summary and Future Work

The main focus of this thesis is to establish a precedent for executing model order reduction

by exploiting the structure of the block Krylov subspaces associated with linearization matrices

of general higher-order linear dynamical systems. The popular method to reduce such systems is

to linearize the general higher-order system and use well-known Krylov subspace-based moment-

matching dimension reduction techniques. This reduction strategy results in increased computa-

tional complexity from dimension augmentation and loss of system properties. However, the SEA

algorithms presented in this thesis address these weaknesses by exploring the special structure of

these block Krylov subspaces.

Chapter 3 presented the Structure Exploiting Arnoldi algorithm as a reduction technique for

ℓth-order linear dynamical systems. This is the first completely general study of algorithms to

exploit the structure of such systems. Chapter 4 introduced an analogous Structure Exploiting

Arnoldi algorithm for special second-order systems of first-order integro-DAEs. These algorithms

process data of the same size as the original general higher-order system, addressing the challenge of

the dimension augmentation when processing higher-order systems. Another nice feature of SEA-

based model order reduction is the preservation of system properties. The results demonstrated in

this thesis indicate the viability of this type of reduction strategy.

One natural question related to this research is to identify the the spectral properties of matrices

in case one form and matrices in case two form. A study of the spectral properties of matrices in case

one form may shed light on applications of the SEA algorithm to polynomial eigenvalue problems.

It seems very likely that the eigenvalues of matrices in case one form can be related to polynomial

eigenvalues arising from a given matrix polynomial using the same linearization matrices discussed

in Chapter 2.

109



Other avenues of research should focus on adapting the generic band SEA algorithm to improve

the numerical properties of SEA-based reduced-order modeling. In the numerical simulations pre-

sented in this thesis, the basis matrix Ân for K(M,R, n) generated in the band SEA algorithm

was relatively ill-conditioned compared with the basis generated by the band Arnoldi algorithm.

Because columns of Ân are not explicitly used to generate the SEA-based reduced-order models,

some flexibility in the updates for these column vectors may be permissible. For example, partial

orthogonalization of updates for Ân or perhaps a projection based on three-term recurrences used

in Chebyshev polynomial methods may be viable alternatives. These would decrease the memory

costs for the SEA algorithm and may maintain desirable accuracy results.

110



Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling,

A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, Third Edition, Society for

Industrial and Applied Mathematics, 1999.

[ABFH00] J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernandez, A Lanczos-type method for multiple starting

vectors, Mathematics of Computation (2000), 1577–1601.

[Arn51] W. Arnoldi, The principle of minimized iterations in the solutions of the matrix eigenvalue problem,

Quarterly of Applied Mathematics 19 (1951), 17–29.

[ASG01] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods for large-scale

systems, Contemporary Mathematics 280 (2001), 193–219.

[AV06] B. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis: A Modern Systems Theory Ap-

proach, Dover Publications, 2006.

[BGM10] G. Baker and P. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and its Applications,

Cambridge University Press, 2010.

[BHtM11] P. Benner, M. Hinze, and E. J. W. ter Maten., Model Reduction for Circuit Simulation, Lecture Notes

in Electrical Engineering, Springer, 2011.

[BMS05] P. Benner, V. Mehrmann, and D. Sorensen, Dimension Reduction of Large-Scale Systems: Proceedings

of a Workshop Held in Oberwolfach, Germany, October 19-25, 2003, Lecture Notes in Computational

Science and Engineering, Springer, 2005.

[Bro07] B. Brogliato, Dissipative Systems Analysis and Control: Theory and Applications, Communications and

Control Engineering, Springer, 2007.

[BS05a] Z. Bai and Y. Su, Dimension reduction of large-scale second-order dynamical systems via a second-order

Arnoldi method, SIAM Journal on Scientific Computing 26 (2005), 1692–1709.

[BS05b] Z. Bai and Y. Su, Soar: A second-order Arnoldi method for the solution of the quadratic eigenvalue

problem, SIAM Journal on Matrix Analysis and Applications. 26 (2005), 640–659.

[CN94] E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation: And Moment Matching for Interconnect

Analysis, Kluwer Academic Publishers, 1994.

[CP02] J. Clark and K. Pister, Addressing the needs of complex MEMS design, Fifteenth IEEE International

Conference on Micro Electro Mechanical Systems, Las Vegas, NV, 2002, pp. 204–209.

111



[CPO02] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, 2002.

[CV02] Y. Chahlaoui and P. Vandooren, A collection of benchmark examples for model reduction of time-

invariant dynamical systems, SLICOT Working Note, 2002-2, 2002.

[Dat04] B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004.

[Dav06] T. Davis, Direct Methods for Sparse Linear Systems, Fundamentals of Algorithms, Society for Industrial

and Applied Mathematics, 2006.

[Deo74] N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, 1974.

[Don02] J. Dongarra, Basic linear algebra subprograms technical forum standard, International Journal of High

Performance Applications and Super Computing 16 (2002), no. 1, 1–111.

[FF95a] P. Feldmann and R. W. Freund, Reduced-order modeling of large linear subcircuits via a block Lanczos

algorithm, In Proceedings of the 32nd ACM/IEEE Design Automation Conference, 1995, pp. 474–479.

[FF95b] P. Feldmann and R. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos

process, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14 (1995),

no. 5, 639–649.

[FF96] R. Freund and P. Feldmann, Reduced-order modeling of large passive linear circuits by means of the

SyPVL algorithm, In Technical Digest 1996 IEEE/ACM International Conference on Computer-Aided

Design, IEEE Computer Society Press, 1996, pp. 280–287.

[FF97] , The SyMPVL algorithm and its applications to interconnect simulation, In Proceedings of 1997

International Conference on Simulation of Semiconductor Processes and Devices, IEEE, 1997, pp. 113–

116.

[Fre99] R. W. Freund, Passive reduced-order models for interconnect simulation and their computation via

Krylov-subspace algorithms, Design Automation Conference (1999), 195–200.

[Fre00] R. Freund, Krylov-subspace modeling in circuit simulation, Journal of Computational Applied Mathe-

matics 123 (2000), 395–421.

[Fre03a] R. W. Freund, Model reduction methods based on Krylov subspaces, Acta Numerica 12 (2003), 267–319.

[Fre03b] R. W. Freund, Padé-type model reduction of second-order and higher-order linear dynamical systems,

In Dimension Reduction of Large-Scale Systems, Benner P, Mehrmann V, Sorensen DC (eds), Lecture

Notes in Computational Science and Engineering, Springer, 2003, pp. 191–223.

[Fre04] , SPRIM: structure-preserving reduced-order interconnect macromodeling, ICCAD, 2004, pp. 80–

87.

[Fre05] R. W. Freund, Krylov subspaces associated with higher-order linear dynamical systems, BIT Numerical

Mathematics 45 (2005), 495–516.

[Fre08] R. Freund, On Padé-type model order reduction of j-hermitian linear dynamical systems, Linear Algebra

and Its Applications 429 (2008), 2451–2464.

112



[Fre11] R. W. Freund, The SPRIM algorithm for structure-preserving order reduction of general RCL circuits,

Model Reduction for Circuit Simulation (P. Benner, M. Hinze, and E. J. W. ter Maten, eds.), Lecture

Notes in Electrical Engineering, vol. 74, Springer Netherlands, 2011, pp. 25–52.

[Fri01] E. Friedman, Clock distribution networks in synchronous digital integrated circuits, Proceedings of the

IEEE 89 (2001), no. 5, 665–692.

[GL96] G. Golub and C. V. Loan, Matrix Computations, Third Edition, John Hopkins University Press, 1996.

[GLR09] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Classics in Applied Mathematics, Society

for Industrial and Applied Mathematics, 2009.

[Gra81] A. Graham, Kronecker Products and Matrix Calculus with Applications, John Wiley and Sons, 1981.

[Hog06] L. Hogben, Handbook of Linear Algebra, Discrete Mathematics and Its Applications, Taylor & Francis,

2006.

[Hog13] , Handbook of Linear Algebra, Second Edition, Discrete Mathematics and Its Applications, Chap-

man and Hall/CRC, 2013.

[HRBR92] H. Heeb, A. Ruehli, J. Bracken, and R. Rohrer, Three dimensional circuit oriented electromagnetic

modeling for VLSI interconnects, In Proceedings of IEEE 1992 International Conference on Computer

Design: VLSI in Computers and Processors, 1992, pp. 218–221.

[JCP98] N. Z. J.V. Clark and K. Pister, MEMS simulation using SUGAR v0.5, Solid-State Sensors and Actuators

Workshop, Hilton Head Island, SC, 1998, pp. 191–196.

[KGP94] S.-Y. Kim, N. Gopal, and L. Pillage, Time-domain macromodels for VLSI interconnect analysis,

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 13 (1994), no. 10,

1257–1270.

[Lan50] C. Lanczos, An iteration method for the solution of the eigenvalue problems of linear differential and

integral operators, Journal of Research of the National Bureau of Standards 45 (1950), 255–282.

[LSF11] P. Li, L. Silveira, and P. Feldmann, Simulation and Verification of Electronic and Biological Systems,

Springer Netherlands, 2011.

[Mee08] K. Meerbergen, The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM

Journal Matrix Analysis and Applications 30 (2008), no. 4, 1463–1482.

[OCP97] A. Odabasioglu, M. Celik, and L. T. Pileggi, PRIMA: passive reduced-order interconnect macromodeling

algorithm, International Conference on Computer Aided Design, 1997, pp. 58–65.

[Ogr94] J. Ogrodzki, Circuit Simulation Methods and Algorithms, Electronic Engineering Systems Series, CRC

Press, 1994.

[PR90] L. Pillage and R. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Computer-

Aided Design CAD-9 (1990), 352–366.

113



[RBR92] V. Raghavan, J. Bracken, and R. Rohrer, AWESpice: a general tool for the accurate and efficient simula-

tion of interconnect problems, In Proceedings of the 29th ACM/IEEE Conference on Design Automation,

1992, pp. 87–92.

[RP94] C. Ratzlaff and L. Pillage, RICE: rapid interconnect circuit evaluation using AWE, Computer-Aided

Design of Integrated Circuits and Systems, IEEE 13 (1994), no. 6, 763–776.

[Rue74] A. E. Ruehli, Equivalent circuit models for three-dimensional multiconductor systems, Microwave Theory

and Techniques, IEEE Transactions 22 (1974), no. 3, 216–221.

[Rue86] A. Ruehli, Circuit Analysis, Simulation and Design, Part 1: General Aspects of Circuit Analysis and

Design, North-Holland, 1986.

[Saa92] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Algorithms and Architectures for Advanced

Scientific Computing Series, Manchester University Press, 1992.

[Saa03] , Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,

2003.

[SC91] T. Su and R. Craig, Model reduction and control of flexible structures using Krylov vectors, J. Guid.

Control Dyn. 14 (1991), 260–267.

[She96] P. Shephard, Integrated Circuit Design, Fabrication and Test, MacMillan Press LTD, 1996.

[She99] B. Sheehan, ENOR: Model order reduction of RLC circuits using nodal equations for efficient factoriza-

tion, In Proceedings of the 36th Design Automation Conference, 1999, pp. 17–21.

[SVDVR08] W. Schilders, H. Van Der Vorst, and J. Rommes, Model Order Reduction: Theory, Research Aspects and

Applications, European Consortium for Mathematics in Industry, Springer, 2008.

[VS83] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold,

1983.

[Wat07] D. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, Society for Industrial

and Applied Mathematics, 2007.

114


	Chapter 1. Introduction
	The Basic Idea of Reduced-Order Modeling
	Moment-Matching Model Order Reduction
	Assumptions on Notation
	Thesis Outline

	Chapter 2. Krylov Subspace Methods for Reduced-Order Modeling
	Block Krylov Subspaces
	Krylov Subspace Methods
	The Arnoldi Algorithm
	The Band Arnoldi Algorithm
	The SOAR Algorithm

	Time-Invariant Linear Dynamical Systems
	Linearization of Higher-Order Systems

	Krylov Subspace-Based Model Reduction

	Chapter 3. The SEA Algorithm for Matrices in Case One Form
	Exploring Matrices in Case One Form
	Alternative Proof of the Factorization Result
	Full-Rank Factorization
	Exact Deflation and the Column Space of W

	The Generic SEA Algorithm for Matrices in Case One Form
	Optimizing SEA for Higher-Order Linear Dynamical Systems
	The Stop Condition via the Full-Rank Factorization
	Optimizing Updates for the Columns of A"0362An+1
	Generating the X(i) Matrices
	Computationally Efficient Single-Input SEA Algorithm

	The Band SEA Algorithm for Matrices in Case One Form
	Applications to Model Order Reduction
	Numerical Examples

	Conclusions

	Chapter 4. The SEA Algorithm for Matrices in Case Two Form
	Exploring Matrices in Case Two Form
	Alternative Proof of the Factorization Result
	Full-Rank Factorization
	Exact Deflation and the Column Space of W

	The Generic SEA Algorithm for Matrices in Case Two Form
	Optimizing SEA for First-Order Intego-DAEs
	The Stop Condition via the Full-Rank Factorization
	Optimizing Updates for the Columns of A"0362An+1
	Generating the Matrix X(2)
	Computationally Efficient Single-Input SEA Algorithm

	The Band SEA Algorithm for Matrices in Case Two Form
	Applications to Model Order Reduction
	Creating Matrices in Case Two Form from RCL Circuits
	Properties of SEA-Based Dimension Reduction of RCL Circuits
	Numerical Experiments

	Conclusions

	Chapter 5. Summary and Future Work
	Bibliography

