Spring 2021, Math 1C, Quiz 3
Due: Tuesday 06/08/2021 at 11:59pm (via CANVAS)

1. Using the second partial derivative test, to find the point(s) on the cone $z^{2}=x^{2}+y^{2}$ nearest the point $P(-2,2,0)$. Show your work.
2. Find the point (x, y) so that the tangent plane to the surface

$$
z=f(x, y)=x^{2}-5 x y+y^{2}
$$

at the point $(x, y, f(x, y))$ is parallel to the plane $x+8 y+z=4$.
3. Consider the function

$$
f(x, y)=(x-1)^{2}+(y-2)^{2}
$$

Find the minimum and maximum values of $f(x, y)$ subject to the constraint that $x^{2}+y^{2}=45$.
4. For problems $4-5$, let $f(x, y)=x^{2}+y^{2}-6 x+2 y-10$. Given this definition, find a vector-valued equation for the tangent line to the level curve

$$
L_{5}(f)=\{(x, y): f(x, y)=5\}
$$

at the point $(6,-5)$.
5. On the axes below, sketch the level curve $L_{5}(f)$ and it's the tangent line from problem 4 above. Also, sketch the vector $\mathbf{u} \in \mathbb{R}^{2}$ with tail at point $(6,-5)$ where \mathbf{u} is the unit vector in the direction of the gradient vector $\nabla f(6,-5)$ given by

$$
\mathbf{u}=\frac{\nabla f(6,-5)}{\|\nabla f(6,-5)\|_{2}}
$$

Now, use full sentences to explain how your graph above relates your knowledge about the shape of the surface $f(x, y)$ and your solution to problem 6 above.
6. Use the second partial derivative test to find the point on the plane $x+y+z=1$ nearest the point $P(2,0,-3)$. Show your work in detail.
7. Find a point(s) on the surface $x^{2}+y^{2}+z^{2}=1$ with a normal vector to the corresponding tangent plane that is parallel to vector $(1,1,1)$.

