\qquad

Spring 2021, Math 1C, Quiz 1

Due: Tuesday $4 / 20 / 2021$ at $1: 30 \mathrm{pm}$ (via CANVAS)

Hooke's Law is a principle of physics stating that the force required to stretch a spring u units from the equilibrium position is given by $F(u)=k \cdot u$, where the positive spring constant k measures the stiffness of the spring. Recall from class that we can set up an experiment to verify Hooke's law using a spring, masses of various size, a scale, and a measuring stick. Below are five collected data points relating to Hooks Law. This data is plotted on a graph in the figure next to the table below. Although the data do not exactly lie on a straight line, we can create a linear model to fit this data.

1. Set up a model for the error e_{i} between the i th data point (u_{i}, f_{i}) and any associated linear model

$$
f(u)=\underbrace{b+k} \cdot(u) \rightarrow k i a
$$

In this case, the parameters $b, k \in \mathbb{R}$ are unknown and the linear function $f(u)$ is the modeled internal force of the spring in Newtons corresponding to a measured displacement u in meters. Then, using the model for the errors, set up the least-squares problem for this input data. In particular, create a two variable function $E(b, k)$ that you can use to solve create the "best-fit" model for this data. Explain in detail the choices that you made to construct your error function E.

Can you explain why it's easier to use calculus to optimize a square function versus absolute value? How is this related to the first versus second derivative tests?

Positivity
$E_{2}(b, K)=\sum_{i=1}^{5}\left[e_{i}(b, k)\right]^{2}<$ monks well in collates
$=\sum_{i=1}^{5}\left[f_{i}-\left(k \cdot n_{i} \alpha_{6}\right)\right]^{2}$

2. Suppose that $\hat{\mathrm{v}}$ is a vector in that starts a point $A(1,0,-1)$ and ends at point $B(-5,6,-4)$. Find a vector of length 6 that is in the same direction but opposite orientation of the vector \mathbf{v}. You can assume that the new vector you create has an initial point at the origin $O(0,0,0)$.

$$
\begin{aligned}
& A(1,0,-1)=\left(x_{1}, y_{1}, z_{1}\right) \\
& B(-5,6,-4)=\left(x_{2}, y_{2}, z_{2}\right) \\
& \vec{V}=\overrightarrow{A B}
\end{aligned}
$$

Findings conpenenit $\rightarrow \vec{V}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle=\langle-5-1,6-0,-4-(-1)\rangle=\langle-6,6,-3\rangle$
of \vec{v},

$$
\begin{aligned}
& \text { using 2-Norm to } \rightarrow\|\vec{v}\|_{2}=\sqrt{(-6)^{2}+(6)^{2}+(-3)^{2}}=\sqrt{36+36+9}=\sqrt{81}=9 \quad \sqrt{\text { find ling th of } \vec{v}} \\
& \text { rolling unit retort } \vec{u}=\frac{1}{4} \cdot\langle-6,6,-3\rangle=\left\langle\frac{1}{4},-c, \frac{1}{4} \cdot 6, \frac{1}{4} \cdot-3\right\rangle=\left\langle-\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right\rangle\left\langle\begin{array}{l}
\text { in the same derret:in } \\
\text { as }
\end{array}\right. \\
& \begin{array}{l}
\text { Show I Ingth of } \vec{u} \rightarrow\|\vec{u}\|_{2}=\sqrt{\left(-\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)}=\sqrt{\frac{4}{4}+\frac{4}{4}+\frac{1}{1}}=\sqrt{\frac{1}{4}}=\sqrt{1}=1 \sqrt{ } \text {. } 1
\end{array} \\
& \begin{array}{l}
\text { milling n victerv } \rightarrow \vec{x}=-1 \cdot 6 \cdot \vec{u}=-6 \cdot\left\langle-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle=\langle 4,-4,2\rangle \text {, } \\
\text { in the s... } \\
\text { direction as } \vec{v}
\end{array} \\
& \begin{array}{l}
\text { direction as } \vec{v} \\
\text { but w/ he opposite }
\end{array} \\
& \text { orientation } \\
& \text { makes } \vec{x} \text { have } \\
& \begin{array}{l}
\text { the opgresite orientation } \\
\text { of } \vec{v}
\end{array}
\end{aligned}
$$

Nice combination of visual, and symbolic representations: I see you making connections between various parts of your work! Ind love to see you expand on the verbal part but overall, I can follow you reasoning here.
3. (8 points) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ and consider the diagram below

Derive an equation for the projection of vector \mathbf{x} onto \mathbf{y}. Be sure to specifically DEFINE the vector \mathbf{p} and the vector \mathbf{r} from the diagram above. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.

$$
\begin{aligned}
& \sqrt{P}=\text { Projection of } \vec{x} \text { on to } \vec{y}, \operatorname{Proj} \vec{y}^{(\vec{x})} \\
& \vec{r}=\text { residual vector, it is or theyman tor } \vec{\gamma} \\
& \text { we went to find a scaler a soc that } \\
& \vec{p}=\alpha \cdot \vec{y} \rightarrow \text { that works as } \vec{p} \text { is in the some direction as } \vec{y} \\
& \text { to do this orthogovial } \\
& =\vec{x}-\widetilde{\alpha \cdot y}-\alpha=\text { do } s \text { u. w...t to fin } \alpha \\
& \vec{y} \cdot \vec{r}=\theta \leftarrow \text { for orthejen.l vectors the out product }=0 \\
& \vec{x} \cdot(\vec{x}-\alpha \vec{y})=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\alpha(\vec{y} \cdot \vec{y})=\vec{x} \cdot \vec{y} \\
\alpha=\frac{\vec{x} \cdot \vec{y}}{\vec{y} \cdot \vec{y}}=\frac{\vec{x} \cdot \vec{y}}{\| \vec{y}^{1 \|_{2}^{2}}} \text {, Sennar }
\end{array} \\
& \text { length via dot poseduct } \\
& \sqrt{\vec{p}}=\operatorname{Pr}-j \vec{y}(\vec{x})=\alpha \cdot \vec{y} \\
& =\frac{\vec{x} \cdot \vec{y}}{\|\vec{r}\|_{2}^{2}} \cdot \vec{y} \\
& =\frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|_{2}} \cdot \frac{\vec{y}}{\|\vec{y}\|_{2}} e^{\text {unit vector in direction of } \vec{y}} \sqrt{ }
\end{aligned}
$$

Let $\vec{a}=\langle 1,0,1\rangle$ and $\overrightarrow{\mathbf{b}}=\langle 0,1,-1\rangle$. Express $\overrightarrow{\mathbf{b}}$ as the sum

$$
\overrightarrow{\mathrm{b}}=\stackrel{\rightharpoonup}{\mathrm{p}}+\stackrel{\rightharpoonup}{\mathrm{r}}
$$

where \mathbf{p} is parallel to \mathbf{a} and \mathbf{r} is orthogonal to \mathbf{a}. Then, use the cosine formula for the dot product to show that \mathbf{r} is orthogonal to a. Explain your work. Why does this make sense?

Projection $\left\{\begin{array}{l}\overrightarrow{\vec{~}} \\ \vec{r} \\ \text { is is or the is the direction to of a }\end{array}\right.$
thees is a projection of \vec{b} onto \vec{a}
So,

$$
\begin{aligned}
& \vec{P}=P_{o_{j} \vec{a}}(\vec{b})=\alpha \cdot \vec{u} \\
& =\frac{\vec{*} \cdot \vec{b}}{\| \frac{1}{b} H_{2}} \cdot \frac{\vec{a}}{\| \vec{R} H_{2}} \\
& =\frac{-1}{r_{2}}, \frac{(1,0,1)}{r_{2}} \\
& =\frac{-1}{2} \cdot(1,0,1) \\
& =\left\langle\frac{1}{2}, 0, \frac{1}{2}\right\rangle \sqrt{ } \\
& \vec{b}=\vec{p}+\vec{r} \\
& \stackrel{\rightharpoonup}{r}=\vec{b}-\vec{p} \\
& \vec{r}=\langle 0,1,-1\rangle-\left\langle\frac{1}{2}, 0,-\frac{1}{2}\right\rangle \\
& =\left\langle\frac{1}{2}, 1,-\frac{x}{2}\right\rangle
\end{aligned}
$$

Careful: Arithmetic error here

$$
\begin{aligned}
& \vec{a} \cdot \vec{r}=\|\vec{a} 1 / 2 \cdot\| \vec{r} \|_{2} \cdot \cos (c) \\
& \cos (\omega)=\frac{\vec{\alpha}}{\|\vec{\alpha}\|_{2}} \cdot \frac{\vec{r}}{\|\overrightarrow{\mid}\|_{2}}=\frac{\langle\phi, 0,1\rangle}{\sqrt{2}} \cdot\left\langle-\frac{\left.1,0,-\frac{1}{2}\right\rangle}{\sqrt{\frac{1}{2}}}\right. \\
& =\left\langle\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle \cdot\left\langle\frac{-1}{2 \sqrt{2}}, 0, \frac{-1}{2 \sqrt{2}}\right\rangle=\frac{1}{\sqrt{2}} \cdot\left(\frac{1}{2 \sqrt{2}}\right)+0.0+\frac{1}{8} \cdot\left(-\frac{-}{2}\right. \\
& \cos (\theta) \times-\frac{1}{2}=-\frac{1}{4}+0-\frac{1}{4} \\
& \theta x \arccos \left(\frac{-1}{2}\right) \\
& \theta=\frac{2 \pi}{3}
\end{aligned}
$$

Math 1C: Quiz 1

Below, please explain your understanding of the cross product between two vectors in \mathbb{R}^{3} by answering each of the questions 5,6 , and 7 below.
5. Let $\mathbf{x}=\left\langle x_{1}, y_{1}\right\rangle$ and $\mathbf{y}=\left\langle x_{2}, y_{2}\right\rangle$ be two vectors in \mathbb{R}^{2}. Using the diagram below, derive an equation for the area of the parallelogram formed by vectors \mathbf{x} and \mathbf{y} based only on the components of these vectors (note: this equation should NOT be based on the angle θ between these vectors). Please explain your answer and specifically identify the steps you took to arrive at your final answer.

You do it like than as you contuse
geometry to find the wean of the perallelegr...
by ringing the ware of \square you the pravllos
of the perallicosiem easily as 'ito the area of

- rectangle plus two triangles. To fix this you subtract A from ir to only ort the aria of the parallelogram. the area of also two triangles of a square.

Aria of pucnlledegram

$$
\left.=x_{1} \cdot y_{2}-x_{2} \cdot y_{1}\right) \quad
$$

$$
\begin{aligned}
& \text { Acorn of a triangle }=\frac{1}{2} \cdot b \text { manse } \cdot \text { height } \\
& \text { Area of a rectangle }=\text { wilt h } \cdot \text { length }
\end{aligned}
$$

Once again: great work describing in words the ideas behind this math.
6. (4 points) Under the same assumptions in problem 3 above, suppose that the variable θ denotes the angle between the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Derive a formula for the area of the parallelogram parallelogram formed by vectors \mathbf{x} and \mathbf{y} as a function of θ and the two norms of these vectors. Please explain your answer and specifically identify the steps you took to arrive at your final answer.

$$
\begin{aligned}
& \text { Stat al perallelogerem mate a line ge straight } \\
& \text { Lu s one of the ant points of } 6 \text { to establish o } h
\end{aligned}
$$

for the parullelogiana.

 So,

$$
\text { Acer of parallelogram: } b \cdot h=6 \cdot a \cdot \sin (\theta)=\left\|\vec{x}_{2}\right\|_{2} \cdot\|\vec{y}\|_{2} \cdot \sin (0)
$$

$$
\|\vec{x}-\vec{y}\|_{2}=\|\vec{x}\|_{2}\left|\vec{x} \|_{2} \cdot\right| \sin (ज) \mid
$$

$$
\begin{aligned}
& a=\|\vec{y}\|_{2} \\
& b=\|\vec{x}\|_{2}
\end{aligned}
$$

W- agent

$$
\begin{aligned}
& \text { postare is a races } \\
& \text { needs io so postie }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Norm soyed get the length of } \\
& \text { the vectors }
\end{aligned}
$$

7. Explain how we can use our work on problems 3 and 4 above to derive the component form of the cross product between the vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ where

$$
\mathbf{x}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle
$$

$$
\mathbf{y}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle
$$

Make sure to explicitly state the component form of the cross product in your explanation. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.
to generalize vectors $\vec{x} \& \vec{y}$ rec-ll the ara of r parallelogram.
because we diR it w/ \mathbb{Z} components, lets look at $\vec{x} \& \vec{y}$ in turns of ry plane, xu plane \& xt plane.

Are
$\underset{(\text { Project vector }}{\text { Anon } x y \text { plane }})=x_{1} \cdot y_{2}-x_{2} \cdot y_{1} \sqrt{ }$
Stere in dithimet compromats of

Area $_{13}^{\text {Project reactor }}=x_{1}, z_{2}-x_{2} z_{1} \sqrt{ }$
Vector. store in component th.) (Project reactor
on $x z$ pro.
Corresponds w/ mas component
$\operatorname{Aren}_{23}=y_{1} z_{2}-y_{2} z_{1} \quad \sqrt{ }$ $\left(\begin{array}{c}\text { Project } \\ \text { vector } \\ \text { on }\end{array} y^{z}\right.$ joan.. $)$

$$
\vec{x} \times \vec{y}=\left(y_{1} z_{2}-y_{2} z_{1}\right) \cdot \overrightarrow{(i)}
$$

Id love to push you a little more:
how is the work you're showing here related to the idea that we use the cross product to do two things:

1. As a "measurement of perpendicularity. 2. To take two vectors in 3D and produce a unique vector that is orthogonal to that vector

$$
\begin{aligned}
& +\left(x_{1} z_{2}-x_{2} z_{1}\right) \cdot(\overrightarrow{-j})=\left\langle y_{1} z_{2}-y_{2} z_{1}, x_{2} z_{1}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right\rangle \\
& +\left(x_{1} y_{2}-x_{2} y_{1}\right) \cdot(\vec{k})
\end{aligned}
$$

```
mitis we component \(\left\{\begin{array}{l}\vec{j} \times \vec{k}=\vec{i} \\ \vec{i} \times \vec{k}=-\vec{j} \\ i \times \vec{j}=\vec{k}\end{array}\right.\)
\(\vec{i}=\langle 1,0,0\rangle\)
\(\vec{j}=(0,1,0)\)
\(\vec{k}=\langle 0,0,1\rangle\)
```

