
(c) Jeffrey A. Anderson

Class Number: 1 C

Spring 2021, Math 1C, Quiz 1

Due: Tuesday $4 / 20 / 2021$ at $1: 30 \mathrm{pm}$ (via CANVAS)
Hooke's Law is a principle of physics stating that the force required to stretch a spring u units from the equilibrium position is given by $F(u)=k \cdot u$, where the positive spring constant k measures the stiffness of the spring. Recall from class that we can set up an experiment to verify Hooke's law using a spring, masses of various size, a scale, and a measuring stick. Below are five collected data points relating to Hooks Law. This data is plotted on a graph in the figure next to the table below. Although the data do not exactly lie on a straight line, we can create a linear model to fit this data.

Displacement u in Meters (m)	Applied force f in Newtons (N)
0.041	0.100
0.086	0.197
0.128	0.298
0.173	0.395
0.218	0.492

1. Set up a model for the error e_{i} between the i th data point $\left(u_{i}, f_{i}\right)$ and any associated linear model

$$
f(u)=b+k \cdot u
$$

In this case, the parameters $b, k \in \mathbb{R}$ are unknown and the linear function $f(u)$ is the modeled internal force of the spring in Newtons corresponding to a measured displacement u in meters. Then, using the model for the errors, set up the least-squares problem for this input data. In particular, create a two variable function $E(b, k)$ that you can use to solve create the "best-fit" model for this data. Explain in detail the choices that you made to construct your error function E.
(1) recall, the error in the data is defined as the actual data subtracted by the modelled data

$$
\begin{aligned}
& \rightarrow e_{i}=y_{i}-\hat{y}_{i} \quad \text { where } e_{i}=\text { error } \\
& y_{i}=\text { actual data } \\
& \hat{y}_{i}=\text { modelled data } \\
& e i(b, k)=y_{i}-\left(b+k \cdot v_{i}\right)
\end{aligned}
$$

(2) using the error model we found $\left(e_{i}\right)$, we will $\sqrt{ }$ construct a two variable function $E(b, k)$ to "best fit" the model

$$
E(b, k)=\sum_{i=1}^{5}\left[e_{i}(b, k)\right]^{2} \quad \sqrt{*} \text { we are using summation }
$$

$$
E E(b, k)=\sum_{i=1}^{S}\left[y_{i}-\left(b+k \cdot v_{i}\right)\right]^{2} \quad \begin{aligned}
& \text { all of the points in } \\
& \text { the data set } \\
& \text { * we take the total squared } \\
& \text { function bic it is }
\end{aligned}
$$

$$
\begin{aligned}
& \text { easier to minimize } \\
& \text { * this creates positive } \\
& \text { values to work with } \\
& \text { while creating an easier } \\
& \text { derivation (incontrast } \\
& \text { to absolute valve) }
\end{aligned}
$$

Can you explain why it's easier to use calculus to optimize a square function versus absolute value? How is this related to the first versus second derivative tests?
2. Suppose that \mathbf{v} is a vector in that starts a point $A(1,0,-1)$ and ends at point $B(-5,6,-4)$. Find a vector of length 6 that is in the same direction but opposite orientation of the vector \mathbf{v}. You can assume that the new vector you create has an initial point at the origin $O(0,0,0)$.
(1) to begin, we want to find the vector produced by the points A \& B. recall, a vector from point A to point B is written as:

$$
\vec{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

$$
\begin{array}{ccc}
A(1,0,-1) & \forall & B(-5,6,-4) \\
x_{1} y_{1} z_{1} & & x_{2} y_{2} z_{2}
\end{array}
$$

Let's fill in the vector!

$$
\begin{aligned}
& \vec{v}=\langle-s-1,6-0,-4-(-1)\rangle \\
& \vec{v}=\langle-6,6,-3\rangle
\end{aligned}
$$

(2) next, we want to find the two norm of \vec{v}. recall, the two norm of a rector is found with:
$11 \cdot \|_{2}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
*using the pythagorean theorem \mathcal{F}

$$
\begin{aligned}
\|\vec{v}\|_{2} & =\sqrt{(-6)^{2}+6^{2}+(-3)^{2}} \\
& =\sqrt{36+36+9} \\
& =\sqrt{81}
\end{aligned}
$$

$$
\|\vec{v}\|_{2}=9 \quad \sqrt{ }
$$

(3) now we want to find the unit rector of \vec{v}. why? this is blu if we find the unit rector of \vec{v}, we can multiply a scalar we want to get the new rector we are looking for. changing \vec{v} to a unit rector reduces the rector to a two norm of 1 , which allows vs to change the length and orientation.
\checkmark
we want to find another rector that has the same direction as \vec{v}, but different length and opposite orientation. what does that mean? let's look at it visually:

$$
\left\{\begin{array}{l}
B(-5,6,-4) \\
\vec{v} \\
A(1,0,-1)
\end{array}\right.
$$

Nice combination of verbal, visual, and symbolic representations: I see you making connections between various parts of your work! This is a great start to the type of evidence for learning that I am looking for!

* the new rector has same direction as \vec{v}

* the new vector has length 6 (0)
* the new vector is in opposite direction as \vec{v}
okay, back to the unit rector. we find the unit vector by "dividing" the vector by it's magnitude.

$$
\begin{aligned}
\frac{\langle-6,6,-3\rangle}{\|\vec{v}\|_{2}} & =\frac{1}{\|\vec{v}\|_{2}} \cdot\langle-6,6,-3\rangle \\
& =\frac{1}{9} \cdot\langle-6,6,-3\rangle \\
& =\left\langle\frac{-6}{9}, \frac{6}{9}, \frac{-3}{9}\right\rangle
\end{aligned}
$$

$$
\text { unit vector }=\left\langle\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right\rangle
$$

(1) using the unit rector \vec{v}, we scale it by -6 . we use -6 because 6 is the length we want and the (-1) allows the vector to be facing the opposite orientation.
$-6 \cdot\left\langle\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right\rangle$

* scalar-rector multiplication results in a vector

$$
\because \mathbb{R} \times \mathbb{R}^{3} \Rightarrow \mathbb{R}^{3}
$$

$$
\begin{aligned}
& =\left\langle-6 \cdot\left(-\frac{2}{3}\right),-6 \cdot \frac{2}{3},-6 \cdot\left(-\frac{1}{3}\right)\right\rangle \\
& =\left\langle\frac{12}{3}, \frac{-12}{3}, \frac{6}{3}\right\rangle \\
& =\langle 4,-4,2\rangle
\end{aligned}
$$

\int 3. (8 points) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ and consider the diagram below

Derive an equation for the projection of vector \mathbf{x} onto \mathbf{y}. Be sure to specifically DEFINE the vector p and the vector \mathbf{r} from the diagram above. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.
(1) before we derive an er for $\operatorname{Proj} \vec{y}(\vec{x})$, we need to define some rectors
(2) from the diagram, \vec{p} is parallel to $\vec{\psi}$. \vec{p} shares the same direction (\longrightarrow) and orientation($\longrightarrow)$ as \vec{y} b/c they are on the same "line" going upwards. However, they have different magnitudes $\sqrt{ }$
(3) let's define \vec{p} algebraically. recall, a vector "sharing the same direction as another rector \vec{y} will look like the following:

$$
\vec{p}=\alpha \cdot \vec{y} \quad \sqrt{ }+\text { where } \alpha \text { is an unknown scalar that }
$$

can adjust \vec{p} 's magnitude and orientation
\longrightarrow since \vec{p} shares the same orientation as \vec{y}, α will be positive
(4) So how do we find α ? we use \vec{r}. $\sqrt{ }$

$$
\begin{aligned}
& \vec{r}=\vec{x}-\vec{p} \quad * \text { the distance blt two vectors } \vec{x} \vec{p} \vec{p} \text { is } \vec{x}-\vec{p} \\
& \vec{r}=\vec{x}-(\alpha \cdot \vec{y}) \\
& \vec{y} \cdot \vec{r}=0 \sqrt{x} \text { the dot product of two vectors is } 0 \\
& \begin{array}{lll}
\text { Math 1C: Quiz 1 } & \text { af they are orthogonal }
\end{array} \\
& \text { (c) Jeffrey A. Anderson }
\end{aligned}
$$

Page 7

$$
\begin{aligned}
& \vec{y} \cdot(\vec{x}-\alpha \cdot \vec{y})=0 \\
& (\vec{y} \cdot \vec{x})-\alpha(\vec{y} \cdot \vec{y})=0 \quad \text { * distribute the } \vec{y} \\
& \vec{y} \cdot \vec{x}=\alpha(\vec{y} \cdot \vec{y}) \\
& \frac{\vec{y} \cdot \vec{x}}{\vec{y} \cdot \vec{y}}=\alpha \quad \sqrt{x} \quad * \text { isolate the } \alpha
\end{aligned}
$$

(5) now that we found α, we know how much to apply to vector \vec{y}

$$
\begin{aligned}
\vec{p} & =\operatorname{Proj} \vec{y}(\vec{x})=\alpha \vec{y} \\
& =\left[\frac{\vec{y} \cdot \vec{x}}{\vec{y} \cdot \vec{y}}\right] \cdot \vec{y} \\
& =\frac{\vec{y} \cdot \vec{x}}{\|\vec{y}\|_{2}^{2}} \cdot \vec{y}
\end{aligned}
$$

* $\vec{y} \cdot \vec{y}$ gives the two nor m of \vec{y}^{2}

$$
=\frac{\vec{y} \cdot \vec{x}}{\|\vec{y}\|_{2}} \cdot \frac{\vec{y}}{\|\vec{y}\|_{2}}
$$

$\sqrt{ } *$ if you multiply our found α scalar by \vec{y} as a unit rector, we get the specific \vec{p} vector with it's magnitude and orientation accounted for
4. Let $\mathbf{a}=\langle 1,0,1\rangle$ and $\mathbf{b}=\langle 0,1,-1\rangle$. Express \mathbf{b} as the sum

$$
\mathbf{b}=\mathbf{p}+\mathbf{r}
$$

where \mathbf{p} is parallel to a and \mathbf{r} is orthogonal to a. Then, use the cosine formula for the dot product to show that \mathbf{r} is orthogonal to a. Explain your work. Why does this make sense?

(1) recall, two nonzero rectors $\vec{x} \$ \vec{y}$ are orthogonal iff $\vec{x} \cdot \vec{y}=0$. also recall, the cosine formula for the dot product tells us that $\vec{x} \cdot \vec{y}=\|\vec{x}\|_{2} \cdot\|\vec{y}\|_{2} \cdot \cos \theta$.
(2) Since we want to show that \vec{r} is orthogonal to \vec{a} w/ the cosine formula for dot product, $\|\vec{r}\|_{2} \cdot\|\vec{a}\|_{2} \cdot \cos \theta$ should have
$a \quad \theta$ of 90° or $\pi / 2$ radians.
(3) but first, let's find what \vec{p} is. since \vec{p} is parallel to \vec{a}, that means they share the same direction, but may have different magnitude and orientation, we can use a projection of \vec{b} onto \vec{a}, recall:
$\vec{p}=\operatorname{Proj} \vec{a}(\vec{b})$
$\vec{p}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|_{2}} \cdot \underbrace{\frac{\vec{a}}{\|\vec{a}\|_{2}}}$

$$
\begin{aligned}
& \text { unit rector of } \vec{a} \\
& \text { to properly scale } \\
& \vec{a} \text { up to } \vec{p}
\end{aligned}
$$

let's find the magnitude of \vec{a} to fill in the above eau. $\|\vec{a}\|_{2}=\sqrt{1^{2}+0^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$
now let's try to solve for \vec{P}

$$
\vec{p}=\frac{\langle 1,0,1\rangle \cdot\langle 0,1,-1\rangle}{\sqrt{2}} \cdot \frac{\langle 1,0,1\rangle}{\sqrt{2}} \quad \text { * vector } \vec{p} \text { using } \begin{gathered}
\text { projections }
\end{gathered}
$$

$$
=\frac{1}{\sqrt{2}} \cdot\langle 1,0,1\rangle \cdot\langle 0,1,-1\rangle \cdot \frac{1}{\sqrt{2}} \cdot\langle 1,0,1\rangle
$$

$$
=\frac{\sqrt{2}}{2} \cdot(1 \cdot 0+0 \cdot 1+1 \cdot(-1)) \cdot \frac{\sqrt{2}}{2} \cdot\langle 1,0,1\rangle
$$

$$
=\frac{\sqrt{2}}{2} \cdot(0+0-1) \cdot \frac{\sqrt{2}}{2} \cdot\langle 1,0,1\rangle
$$

$$
=\frac{-\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot\langle 1,0,1\rangle
$$

$$
=\frac{-2}{4} \cdot\langle 1,0,1\rangle
$$

$$
\vec{p}=\left\langle\frac{-1}{2}, 0, \frac{-1}{2}\right\rangle
$$

(4) now let's solve for r vising the sum provided
$b=p+r$
$b-p=r$
$b+(-1) p=r$
we can use \vec{b} and the \vec{p} we found to find \vec{r} ?

$$
\begin{aligned}
r & =\langle 0,1,-1\rangle+\langle-1) \cdot\left\langle-\frac{1}{2}, 0,-\frac{1}{2}\right\rangle \\
& =\langle 0,1,-1\rangle+\left\langle\frac{1}{2}, 0, \frac{1}{2}\right\rangle \\
r & =\left\langle\frac{1}{2}, 1,-\frac{1}{2}\right\rangle
\end{aligned}
$$

(5) now that we have \vec{r}, we need to find the two norm of \vec{r} to plug into the cosine formula
$\|\vec{r}\|_{2}=\sqrt{\left(\frac{1}{2}\right)^{2}+1^{2}+\left(-\frac{1}{2}\right)^{2}}$
$=\sqrt{\frac{1}{4}+1+\frac{1}{4}}$
$=\sqrt{\frac{2}{4}+\frac{4}{4}}$
$\|\vec{r}\|_{2}=\sqrt{\frac{6}{4}}=\sqrt{6 \cdot \frac{1}{4}}=\frac{1}{2} \sqrt{6}$
(6) let's plug our findings into the cosine formula for dot product.

$$
\vec{r} \cdot \vec{a}=\|\vec{r}\|_{2} \cdot\|\vec{a}\|_{2} \cdot \cos \theta
$$

$$
\left\langle\frac{1}{2}, 1,-\frac{1}{2}\right\rangle \cdot\langle 1,0,1\rangle=\frac{1}{2} \sqrt{6} \cdot \sqrt{2} \cdot \cos \theta
$$

$$
\frac{1}{2} \cdot 1+1 \cdot 0+\left(-\frac{1}{2}\right) \cdot 1=\frac{1}{2} \sqrt{12} \cdot \cos \theta
$$

$$
\frac{1}{2}+0-\frac{1}{2}=\frac{1}{2} \sqrt{4 \cdot 3} \cdot \cos \theta
$$

$$
\begin{aligned}
0 & =\frac{1}{2} \cdot 2 \cdot \sqrt{3} \cdot \cos \theta \\
0 & =\sqrt{3} \cos \theta \\
0 & =\cos \theta \\
\cos ^{-1}(0) & =\theta \\
\theta & =\frac{\pi}{2}
\end{aligned}
$$

since $\theta=\frac{\pi}{2}$, we know that \vec{r} is orthogonal to $\vec{a} w /$ the
cosine formula for dot product. since the dot product on the
left side of the equation is 0 , the two rectors are orthogonal
because the cosine of $\pi / 2$ is 0 .

Below, please explain your understanding of the cross product between two vectors in \mathbb{R}^{3} by answering each of the questions 5,6 , and 7 below.
5. Let $\mathbf{x}=\left\langle x_{1}, y_{1}\right\rangle$ and $\mathbf{y}=\left\langle x_{2}, y_{2}\right\rangle$ be two vectors in \mathbb{R}^{2}. Using the diagram below, derive an equation for the area of the parallelogram formed by vectors \mathbf{x} and \mathbf{y} based only on the components of these vectors (note: this equation should NOT be based on the angle θ between these vectors). Please explain your answer and specifically identify the steps you took to arrive at your final answer.
$\sqrt{(1)}$ to find formed by vectors $\vec{x} \not \equiv \vec{y}$, we need to look at it geometrically to form algebraic setences \qquad

\rightarrow we notice that there
can be triangles formed insideloutside of the parallelogram, and their side lengths have some sort to do w/ the components of the vectors $\vec{x} \quad \vec{y}$
$\sqrt{ }$ (2) we can find the area of the parallelogram by subtracting out what we dont need! the orange shape subtracted by the blue shape gives us the parallelogram we want.
(3) what we do how is find the areas of the orange shape and the blue shape
orange shape

blue shape

rectangle: $y_{1} \cdot x_{2}$

$$
\frac{1}{2} x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}+y_{1} x_{2}
$$

(1)
now, we subtract the area of the orange shape from the area of the blue shape to get the area of the parallelogram! (i)
$\frac{1}{2} x / y_{2}+\frac{1}{2} y_{1} y_{1}+y_{2} x_{1}-\left(\frac{1}{2} x_{1} y_{1}+\frac{1}{2} x_{2} y_{2}+y_{1} x_{2}\right)$
$=x_{1} y_{2}-x_{2} y_{1}=$ area of parallelogram!
6. (4 points) Under the same assumptions in problem 3 above, suppose that the variable θ denotes the angle between the vectors $x, y \in \mathbb{R}^{2}$. Derive a formula for the area of the parallelogram perallelegran formed by vectors \mathbf{x} and \mathbf{y} as a function of θ and the two norms of these vectors. Please explain your answer and specifically identify the steps you took to arrive at your final answer.
(i) recall, back in elementary school, the area of a parallelogram is base times height

How do you know this is true?
Can you justify this visually?
How do you know this is true?
Can you justify this visually?

* this is not the
coordinate axis!
(2) using the components of the vectors $\vec{x} \quad \vec{b} \overrightarrow{1}$, we can find the base and the height of the parallelogram
base
the base of the parallelogram will be the two norm of \vec{x}. recall, the two norm of a vector is it's magnitude aka length
$b=\|\vec{x}\|_{2}$
height
the height of the parallelogram is more tricky bic it is not as clear. we will need to use trigonometric identities to find the herght.

$$
\text { recall, } \sin (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

using the triangle found inside of the h $\sqrt{ }$ parallelogram, we can apply this trig identity

$$
\sin (\theta)=\frac{h}{9}
$$

since we want to isolate the h (we are trying to find the area of the parallelogram, that is why we are here), we will rearrange the equation

$$
\begin{array}{ll}
\sin (\theta)=\frac{h}{a} & * a=\|\vec{y}\|_{2} \\
a \sin (\theta)=h & \text { of } \vec{y} \text { gin } \\
\|\vec{y}\|_{2} \sin (\theta)=h & \text { (ن) yayyyy }
\end{array}
$$

(3) Now that we found our base and height, we can multiply them together!!!
area of parallelogram $=b \cdot h$

$$
=\underbrace{\|\vec{x}\|_{2}}_{\text {base }} \cdot \underbrace{\|\vec{y}\|_{2} \cdot \sin (\theta) \text { units }^{2}}_{\text {height! }}
$$

$\sqrt{\text { 7. Explain how we can use our work on problems and } 4 \text { above to derive the component form of the cross }}$ product between the vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ where

$$
\mathbf{x}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle, \quad \mathbf{y}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle
$$

Make sure to explicitly state the component form of the cross product in your explanation. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.
(1) so, the formula for component form cross product is: $\vec{x} \times \vec{y}=\left(y_{1} z_{2}-y_{2} z_{1}\right) \cdot \vec{i}+\left(x_{1} z_{2}-x_{2} z_{1}\right) \cdot(-\vec{j})+\left(x_{1} y_{2}-x_{2} y_{1}\right) \cdot \vec{k}$
$\sqrt{ }$ (2) now what did that come from? recall, if we have a set of vectors $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, b \vec{k}=\langle 0,0,1\rangle$

$$
\vec{i} \times \vec{j}=+\vec{k} \sqrt{ }
$$

* notice that each rector has 2 zero components, and 1 one component (the 1 is where we will apply the rector)
also, recall in question s, we found that the are a of a parallelogram is:

$$
x_{1} y_{2}-x_{2} y_{1}
$$

$\sqrt{ }$ (3) since we have 3 components to deal with, we would need to split up the problem into 3 so that we will instead deal with 3 two component rectors
using the area of a parallelogram, we will disregard a different component for each set

Area without the z

$$
x_{1} y_{2}-x_{2} y_{1} \rightarrow \vec{k}
$$

Area without the y

$$
x_{1} z_{2}-x_{2} z_{1} \rightarrow-\vec{j}
$$

Area without the x

$$
y_{1} \cdot z_{2}-y_{2} \cdot z_{1} \rightarrow \vec{i}
$$

$\sqrt{ } \sqrt{ }$ since we noticed that the $\vec{i}, \vec{j}, \vec{k}$ vectors have a 1 in a certain component, we can match them up with their respective "areas who the blah"

* now it looks similar to the formula in (1)! WEPICN ($\ddot{\nabla}$)
(4) putting it all together, we should arrive at a rector in \mathbb{R}^{3}. the cross product of two vectors results in a vector.

$$
\vec{x} \times \vec{y}=\langle\underbrace{\left\langle y_{1} z_{2}-y_{2} z_{1}\right.}_{\text {st component }}, \underbrace{x_{2} z_{1}-x_{1} z_{2}}_{\text {and component }}, \underbrace{x_{1} y_{2}-x_{2} y_{1}}_{\text {3nd component }}\rangle
$$

* Ind component is flipped bic it is multiplied by $-\vec{j}$

