Spring 2021, Math 1C, Quiz 1
Due: Tuesday $4 / 20 / 2021$ at $1: 30 \mathrm{pm}$ (via CANVAS)
Hooke's Law is a principle of physics stating that the force required to stretch a spring u units from the equilibrium position is given by $F(u)=k \cdot u$, where the positive spring constant k measures the stiffness of the spring. Recall from class that we can set up an experiment to verify Hooke's law using a spring, masses of various size, a scale, and a measuring stick. Below are five collected data points relating to Hooks Law. This data is plotted on a graph in the figure next to the table below. Although the data do not exactly lie on a straight line, we can create a linear model to fit this data.

Displacement u in Meters (m)	Applied force f in Newtons (N)
0.041	0.100
0.086	0.197
0.128	0.298
0.173	0.395
0.218	0.492

1. Set up a model for the error e_{i} between the i th data point $\left(u_{i}, y_{i}\right)$ and any associated linear model

$$
f(u)=b+k \cdot u \text { slope }
$$

In this case, the parameters $b, k \in \mathbb{R}$ are unknown and the linear function $f(u)$ is the modeled internal force of the spring in Newtons corresponding to a measured displacement u in meters. Then, using the model for the errors, set up the least-squares problem for this input data. In particular, create a two variable function $E(b, k)$ hat you can use to solve create the "best-fit" model for this data. Explain in detail the choices that you made to construct your error function E.
To create a model for the error, the idea is to subtract the actual data from its modeled values.

$$
e_{i}=f_{i}-\hat{f_{i}}
$$

Tyr modeled data is gin from $f(u)=b+k \cdot u$.
he can sub in this infamation to the equation for error

$$
\rightarrow e_{i}(k, b)=f_{i}-\left(k u_{i}+b\right)
$$

To find the error, you want to talk e the sun of the
we can sub in the error model to get the following equation valued

$$
E(k, b)=\sum_{i=1}^{5}\left(f_{i}-k_{u_{i}}-b\right)^{2}
$$

values ratter than tare teabsoluted value because it makes calculations more complicated down tel line, drily shaming ep te
 derivative tests?

$$
{ }^{6} \xrightarrow{A(1,0,-1)} B(-5,6,-4)
$$

$\sqrt{ }$ 2. Suppose that \mathbf{v} is a vector in that starts a point $A(1,0,-1)$ and ends at point $B(-5,6,-4)$. Find a vector of length 6 that is in the same direction but opposite orientation of the vector \mathbf{v}. You can assume that the new vector you create has an initial point at the origin $O(0,0,0)$.

First, lets construct vector V from $\vec{A} \& \vec{B}$.

$$
\begin{aligned}
& \vec{v}=\langle-5-1,6-0,-4--1\rangle \\
& \vec{v}=\langle-6,6,-3\rangle
\end{aligned}
$$

Next, let's deterennire ti s magnitude of \vec{v}

$$
\begin{aligned}
\|\vec{v}\|_{2} & =\sqrt{(-6)^{2}+6^{2}+(-3)^{2}} \\
& =\sqrt{36+36+9}=\sqrt{81}=9
\end{aligned}
$$

We can now create a unit vector, \vec{u}, by normalizing \vec{v}

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|_{2}}=\frac{\langle-6,6,-3\rangle}{9}=\left\langle-\frac{6}{9}, \frac{6}{9},-\frac{3}{9}\right\rangle=\left\langle-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle
$$

Let's reverse this vector to point it in the opposite direction

$$
\vec{u}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle
$$

Finally, we scale te vector up by 6 to get the desired vector

$$
6 \cdot \vec{u}=6\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle
$$

$\begin{aligned} & \text { final } \\ & \text { vector }\end{aligned}=\langle 4,-4,2\rangle$

Nice combination of verbal, visual, and symbolic
representations: I see you making connections between
various parts of your work! This is a great start to the type
of evidence for learning that I am looking for!
號!
$\sqrt{ }$ 3. (8 points) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ and consider the diagram below
According to the question, we wart to find $\vec{p}=\operatorname{Proj} \vec{y}(\vec{x})$
T_{0} find \vec{p}_{1} we must find a scalar α such that $\vec{p}=\alpha \cdot \vec{y}$ What is the difference between orientation and direction?

Derive an equation for the projection of vector \mathbf{x} onto \mathbf{y}. Be sure to specifically DEFINE the vector \mathbf{p} and the vector \mathbf{r} from the diagram above. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.
We can determine α in terms of $\vec{y} \& \vec{x}$ by ing the residual vector $\begin{aligned} \vec{r} & =\vec{x}-\vec{p} \\ \vec{r} & =\vec{x}-(\alpha \cdot \vec{y})^{r}\end{aligned}$ plug in equation for \vec{p} $\begin{aligned} & \vec{r}=\vec{x}-(\alpha \cdot \vec{y}) \\ & \text { if }\end{aligned}$
$\vec{y} \cdot \vec{r}$ are orthogonal if $\vec{y} \cdot \vec{r}=0$, we can plug in
the equation for \vec{r} so that we inly wave the equation for \vec{r} so that ne only have variables
$\vec{x}, \vec{y}, \& a$ in an equation

$$
\left.\begin{array}{rl}
0 & =\vec{y} \cdot \vec{r} \\
0 & =\vec{y} \cdot(\vec{x}-(\alpha \cdot \vec{y}) \quad \\
0 & =\vec{y} \cdot \vec{x}-\alpha \vec{y} \cdot \vec{y} \quad \checkmark \\
\alpha \vec{y} \cdot \vec{y} & =\vec{y} \cdot \vec{x} \quad \text { bu definition, } \vec{y} \cdot \vec{u}=||\vec{u}|
\end{array}\right\} \text { then isolate } \alpha!
$$

$$
\alpha=\frac{\vec{y} \cdot \vec{x}}{\vec{y} \cdot \vec{y}} \quad \Rightarrow \quad \text { by definition, } \vec{y} \cdot \vec{y}
$$

Now that we have α, we can plug it into the

$$
\begin{aligned}
& \begin{array}{l}
\vec{p}=\alpha \cdot \vec{y}=\vec{p}=\frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|_{2}} \cdot \vec{y} \quad \begin{array}{l}
\text { this } \vec{y} \text { must have } \\
\text { a magnitude of } 1, \\
\text { so we can carcort it } \\
\text { to its unit vector }
\end{array} \\
\Rightarrow \vec{p}=\frac{\vec{y} \cdot \vec{x}}{\|\vec{y}\|_{2}} \cdot \frac{\vec{y}}{\left\|\frac{\vec{y}}{y}\right\|_{2}} \quad \begin{array}{l}
\text { with Jeffrey A. Anderson } \frac{y}{\|\vec{y}\|_{2}}
\end{array} \\
\frac{\text { Math 1C: Quiz } 1}{}
\end{array}
\end{aligned}
$$

where \mathbf{p} is parallel to \mathbf{a} and \mathbf{r} is orthogonal to \mathbf{a}. Then, use the cosine formula for the dot product to
show that \mathbf{r} is orthogonal to a. Explain your work. Why does this make sense?
We wart to find vector $\vec{p}=\operatorname{Proj} \vec{a}(\vec{b})$, which is an orthogonal projection of \vec{b} onto \vec{a}. We can use th following formula to determine \vec{p}.

$$
\vec{p}=\operatorname{Proj}_{\vec{a}}(\vec{b})=\left[\frac{\vec{b} \cdot \vec{a}}{\|\vec{a}\|_{2}^{2}}\right] \cdot \vec{a}
$$

To calculate this, let's find $\vec{b} \cdot \vec{a}$ \& $\|\vec{a}\|_{2}^{2}$.

$$
\begin{aligned}
\vec{b} \cdot \vec{a} & =\langle 0,1,-1\rangle \cdot\langle 1,0,1\rangle \\
& =0 \cdot 1+1 \cdot 0+-1 \cdot 1 \\
& =-1
\end{aligned} \quad\|\vec{a}\|_{2}^{2}=(1)^{2}+(0)^{2}+(1)^{2}=2
$$

we plug these values back into the equation for \vec{p}

$$
\vec{p}=\left[\frac{-1}{2}\right] \cdot\langle 1,0,1\rangle=\left\langle-\frac{1}{2}, 0,-\frac{1}{2}\right\rangle
$$

Now that we have \vec{p}, we can find \vec{r}.

$$
\begin{aligned}
& \langle 0,1,-1\rangle=\left\langle-\frac{1}{2}, 0,-\frac{1}{2}\right\rangle+\langle ?, ?, ?\rangle \\
& 0=-\frac{1}{2}+x \quad \vec{r}=\left\langle\frac{1}{2}, 1,-\frac{1}{2}\right\rangle \\
& x=\frac{1}{2}
\end{aligned}
$$

$$
1=0+y
$$

We can plug \vec{r} \& \vec{a} into the

$$
y=1
$$ cosine formula to check whetter

$$
-1=-\frac{1}{2}+z
$$ they are orthogonal

$$
-\frac{1}{2}=z
$$

$$
=\sqrt{\left(\frac{1}{2}\right)^{2}+1^{2}+\left(-\frac{1}{2}\right)^{2}}
$$

$$
\begin{aligned}
\vec{r} \cdot \vec{a} & =\|\vec{r}\|_{2} \cdot\|\vec{a}\|_{2} \cdot \cos (\theta) \\
& =\sqrt{\frac{3}{2}} \cdot \sqrt{2} \cdot \cos (90)
\end{aligned}
$$

$$
\vec{r} \cdot \vec{a}=0
$$

$\vec{r} \& \vec{a}$ must be orthogonal if the angle between them is 90°

Below, please explain your understanding of the cross product between two vectors in \mathbb{R}^{3} by answering each of the questions 5,6 , and 7 below.
5. Let $\mathbf{x}=\left\langle x_{1}, y_{1}\right\rangle$ and $\mathbf{y}=\left\langle x_{2}, y_{2}\right\rangle$ be two vectors in \mathbb{R}^{2}. Using the diagram below, derive an equation for the area of the parallelogram formed by vectors \mathbf{x} and \mathbf{y} based only on the components of these vectors (note: this equation should NOT be based on the angle θ between these vectors). Please explain your answer and specifically identify the steps you took to arrive at your final answer.
The area of the parallelogram in the figure can visually be found by the area of

To find t_{k} areas of these two shapes, we can break them down into smaller parts:

The area of the larger shapes will be the sun oftte areas of its smaller parts, which we can find based on the components of vectors $\vec{x} \& \frac{\vec{y}}{}$. sanevere

$$
\Delta=\square-\Delta=(\alpha+\beta+\square)-(\not, \alpha+\beta+\square)
$$

Area of the

$$
\text { parallelogram }=y_{2} \cdot x_{1}-x_{2} \cdot y_{1}
$$

6. (4 points) Under the same assumptions in problem 3 above, suppose that the variable θ denotes the angle between the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Derive of formula for the area of the parallelogram parallelogram formed by vectors \mathbf{x} and \mathbf{y} as a function of θ and the two norms of these vectors. Please explain your answer and specifically identify the steps you to pk to arrive at your final answer.
The area of a parallelogram is $b \cdot h$ where
We are given the parallelogram:

\checkmark In this figure, b of the parallelogram is $\|\vec{x}\|_{2}$
\& h is unknown at the moment.
To find h, we can use the angle θ and $\|\vec{y}\|_{2}$ in $\sin (\theta)=\frac{h}{\|\vec{y}\|_{2}}$
$h=\|\vec{y}\|_{2} \cdot \sin (\theta)$$\underbrace{\text { nave sole }}$ for h Now we have b \& h, we can plug into the area of parallelogram equation

$$
b=\|\vec{x}\|_{2} \quad \& \quad \vec{h}=\|\vec{y}\|_{2} \cdot \sin (\theta)
$$

$\underset{\text { Area of the }}{\text { parallelogram }}=b \cdot h=\|\vec{x}\|_{2} \cdot\|\vec{y}\|_{2} \cdot \sin (\theta)$ parallelogram
7. Explain how we can use our work on problems 3 and 4 above to derive the component form of the cross product between the vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ where

$$
\underset{\boldsymbol{a}}{\boldsymbol{a}}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle,
$$

$$
\mathbf{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle
$$

Make sure to explicitly state the component form of the cross product in your explanation. Please explain your work. For top scores, please demonstrate multiple dimensions of your concept image associated with this derivation.
\checkmark The components of the cross product of \vec{a} \& \vec{b} are orthogonal to respect re components of vectors \vec{a} \& \vec{b}.

- The first component of te cross product, will be plane (since the 1 component is in th i direction.)
The perpendicularity of tee y, z components of $\vec{a} \& \vec{b}$ can be measured 6 g taking to area of the parallelogram.

$$
\text { Area cz }=y_{1} \cdot z_{2}-y_{2} \cdot z_{1} \text { missing } x \text {, so }
$$

- The second component of $\frac{1}{}$ cross product is orthogonal to the components of $\vec{a} \& \vec{b}$ in the $x z$ plane.
Area $x z=x_{1} \cdot z_{2}-x_{2} \cdot z_{1} \stackrel{v}{ }$ missing y \& goes in ti s -j junction according to right hand rule.
- The third component of the cross prodicuet is orthogonal to the components of $\vec{a} k \vec{b}$ in th xy plane.
Area $x_{y}=x_{1} \cdot y_{2}-x_{2} \cdot y_{1}$-missing z_{1} goes in the $+k$ direction
plug in the components:

$$
\begin{aligned}
\vec{a} \times \vec{b}= & \left\langle\left(y_{1} \cdot z_{2}-y_{2} \cdot z\right) \cdot(\overrightarrow{+})\right. \\
& \left.\frac{\left(x_{1} \cdot z_{2}-x_{2} \cdot z_{1}\right) \cdot(-\vec{j})}{\left(x_{1} \cdot y_{2}-x_{2} \cdot y_{1}\right) \cdot(+\vec{k})}\right\rangle \\
\sqrt{(} \times \vec{b}=\langle & \left.\underline{y_{1} \cdot z_{2}-y_{2} z_{1}}, \underline{x_{2} z_{1}-x_{1} \cdot z_{2}}, \underline{\left.x_{1} \cdot y_{2}-x_{2} \cdot y_{1}\right\rangle}\right\rangle
\end{aligned}
$$

