
Problem 1:

Given the linear model f(u) = b + ku, and a series of data points (ui, fi), the
error for any ith data point may be quantified in the following way:

ei = fi � f(ui) = fi � (kui + b).

In this equation ei represents the di↵erence between a data value and our

linear model evaluated at the same input value ui.

If the aim is to construct a line of best fit for all (ui, fi), in the case that there

are multiple data points, we must develop a multivariate function, E(b, k), such
that di↵erent choices of b and k will yield di↵erent linear models when applied

to the data set, allowing us to optimize this function so that our model fits our

data ”well” based on some metric (to follow).

Before stating this equation it must be specified more what is meant by ”best-

fit”. In an intuitive sense, a model will more accurately represent experimental

data, when ei small. Since our data set is not a single point in R2
, however, in

order for our linear model to fit the data, ”well” we must seek for the lowest

possible error ”on-average”, or with respect to all the data. We will apply a

method known as Least-Squares Regression to account for all data points along

with some other benefits.

E(b, k) =
5X

i=1

(ei)
2
=

5X

i=1

[fi � (kui + b)]2.

Which for the given data set consisting of five ei, becomes:

E(b, k) = [0.100� (k(.041) + b)]2+

[0.197� (k(.086) + b)]2+

[0.298� (k(.128) + b)]2+

[0.395� (k(.173) + b)]2+

[0.492� (k(.218) + b)]2

The above equation, while somewhat simple, is useful and appropriate for

the following reasons.
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connections between various parts of your work! This is a great start to the type of
evidence for learning that I am looking for! I appreciate how you are really exploring 
the full set-up for this problem and demonstrating your knowledge about how this problem 
relates to one of the major themes in this class: that of creating multivariable functions! 



Figure 1: Ah, There’s the Rub! f 0
(x) = x

|x|

1.We consider the sum of the errors since, in general, a smaller sum represents

a line that is ”on-average” as close as possible to the provided data. That is, it

allows us to consider the model’s closeness to all the data rather than a single

point.

2.Each term ei of the sum should be recorded as a ”distance” or magnitude,

that is they should be non-zero, since data that might lie below our linear model

geometrically is not any less ”close” to our model than points lying above our

model. If we allow for a sum with ei < 0 we run the risk of having an inaccurate

function to optimize(we would in e↵ect be calculating the di↵erence between

two ei, ej , i 6= j and in general would not be accurately measuring accumulative

error sizes). In some way we need to ensure error values are not signed.

We might at first consider the absolute value operator as our means by

which to obtain non-negative ei. Using e2i is better for two reasons(there may

be more). Firstly, since this is an optimization problem which implies using

di↵erentiation on our function, we want our function to have a derivative that

is everywhere defined. Any function of the form f : x 7!| ax + c | will not will
not have a continuous derivative as shown in figure above.

Secondly,
Pn

i=1 e
2
i will produce a polynomial-multivariate function. A poly-

nomial function will be continuously di↵erentiable,and furthermore, will be easy

to work with, since any polynomial is composed with only multiplication and

addition which are easy to di↵erentiate, and computationally e�cient to di↵er-

entiate in the case that n is large.

Problem 2:

~v is a vector with an initial point A(1, 0,�1) and a terminal point B(�5, 6, 4).
Thus,

~v =

2

4
�5� 1

6� 0

�4 + 1

3

5 =

2

4
�6

6

�3

3

5 .

To produce a new vector that is in the same direction (colinear) to ~v, that
has an opposite orientation, and a length of 6, we will.

1. Find v̂ (colinear unit vector to ~v )

2. Scale this unit vector v̂ by 6, and orient it such that it is opposite to ~v by
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scaling it by a negative factor.

Step 1:

v̂ =
~v

k~vk =
1

((�6)2 + 62 + (�3)2)
1
2

·

2

4
�6

6

3

3

5 =
1p
81

·

2

4
�6

6

3

3

5 =
1

9
·

2

4
�6

6

3

3

5 =

2

4
� 6

9
6
9
3
9

3

5 =

2

4
� 2

3
2
3
1
3

3

5 .

Step 2:

�6 · v̂ = �6 ·

2

4
� 2

3
2
3
1
3

3

5 =

2

4
12
3

� 12
3�6

3

3

5 =

2

4
4

�4

�2

3

5

This is the vector we hoped to establish.

Remark 1. This procedure relies on the true proposition kc~xk =| c | k~xk, c 2 R,
which expresses a few very important properties for Rn. For the above problem,
it says that any vector can be stretched or shrunk to a desired length | c | k~xk
simply by scaling the vector by that that factor. Conversely, it specifies that all
that is guaranteed by this operation is that the vector’s scaled norm is the same,
and whether or not ~x is given a new orientation depends on whether c > 0 or
c < 0. Finally, this equation reinforces that idea that a vectors components scale
with length, which helps to explain why the formula for producing unit vectors
works, ~v

k~vk . This result follows from the definition of scalar-vector multiplication
and the above equation.

I would like to discuss metric and normed spaces with you further, but want
some time to explore further before writing more here. I think understand how
the above property can be can be proven or at least more deeply understood
from the properties that a metric space must have when they are combined with
linear spaces to form normed spaces( for a normed space it is desirable and
intuitive to reality to combine linear properties with our metric, so we want
linear scaling(above) and we also want translational invariance (think two beads
connected by a string, translated in space). The two norm definition for Rn

provides for these properties.

Problem 3:

[ht]

Let ~p = proj~y(~x), and assume that ~r denotes a vector orthogonal to ~y, and
equal to the di↵erence between ~x and ~p. Then the following may be stated:

1.Let ~r be both orthogonal to ~y and the vector di↵erence between ~p and ~x.

proj~y(~x) = ~x� ~r $ ~r = ~x� ~p

2.Since ~r ? ~y,

~y · ~r = 0

3.~p and ~y are colinear meaning that each one representable as scalar multiple of the other.

↵~y = ~p,↵ 2 R
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Taking these equations above in conjunction:

0 = ~y · ~r = ~y · (~x� ~p) By substitution

= ~y · ~x� ~y · ~p Right-Distributivity(linearity) of dot product

= ~y · ~x� ~y · ↵~y Substitution

= ~y · ~x� ↵(~y · ~y) Homogeneity of dot product

= ~y · ~x� ↵k~yk2 Definition of two-norm

$ ↵k~yk2 = ~y · ~x

↵ =
~y · ~x
k~yk2 . Rearrange and solve for scalar ↵

Then,

proj~y(~x) = ~p = ↵~y =
~y · ~x
k~yk2 · ~y =

~y · ~x
k~yk · ~y

k~yk .

In this final equation, the farthest right-hand size may be interpreted and visu-

alized as a unit vector co linear to ~y, scaled by a real number equal to the size of

the projection of ~x onto ~y. This can be seen geometrically with the knowledge

that
~y·~x
k~yk = k~xk cos ✓ (how to scale the unit vector).
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Problem 4:

a =< 1, 0, 1 >

b =< 0, 1,�1 >

Find ~b = ~p+ ~r : pka ^ r ? a.

pka =) (c~p = ~a, c 2 R ^ ~a⇥ ~p = 0)

r ? a =) ~r · ~a = 0

Using this information and a series of substitutions:

~r · ~a = 0 $ r1 + r3 = 0 $ r1 = �r3

b = ca+ r =< c, 0, c > +r =< 0, 1,�1 >

=)
0 = c+ r1 $ c = �r1 = r3

1 = r2

�1 = c+ r3 $ �1 = r3 + r3 $ r3 = �1

2
=) r1 =

1

2

) r =<
1

2
, 1,�1

2
>, p = �1

2
a =< �1

2
, 0,�1

2
>

then,

~p+ ~r =

2

4
� 1

2
0

� 1
2

3

5+

2

4
1
2
1

� 1
2

3

5 =

2

4
0

1

�1

3

5 = ~b.

~r · ~a = k~rkk~ak cos ✓

~r · ~a = (
1

4
+ 1 +

1

4
)

1
2 · (1 + 1)

1
2 cos ✓

=

r
3

2

p
2 cos ✓

✓ = cos
�1

(

1
2 + 0� 1

2q
3
2

p
2

) = cos
�1

(0) = 90°

) ~r is indeed orthogonal to ~a.
There is a simpler way to do this that fundamentally is saying the same

thing. I didn’t think of it first for whatever reason so that is why it is second.

If ~p is colinear to ~a, and ~r is perpendicular to ~a, then b can be given as the

sum of ~p and ~r with p as the projection of b onto a and r as the residual vector
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orthogonal to the projection. Solving the problem this way looks as follows:

proj~a(~b) + r = b

~a ·~b
k~ak2 · ~a+ r = b

�1

2
· < 1, 0, 1 > +r =< 0, 1,�1 >

r =< 0, 1,�1 > � < �1

2
, 0.� 1

2
>=<

1

2
, 1,�1

2
> .

This is the same result as above.

Problem 5:

An equation representing the area of the parallelogram spanned by ~x and ~y in

R2
may be produced by a geometric di↵erence which is equal to | det[~x, ~y] |

(Proof that is is magnitude here requires more work, provided later).

Four geometric shapes with simple formulas for their areas, may be specified

by the components of ~x and ~y.(Figure 2) They are:

• 2 pairs of triangles given by
x1y1

2 , x2y2

2

• A large rectangle given by x1y2

• A smaller rectangle given by x2y1

The area of the parallelogram may then be given by the di↵erence:

[x1y2 +
x1y1
2

+
x2y2
2

]� [x2y1 +
x1y1
2

+
x2y2
2

] = x1y2 � x2y1 = det[~x, ~y].

Notice that the last two terms of the binomial on the left are identical to the last

two terms of the right hand binomial, meaning that their di↵erence is zero (they

cancel), leaving only the terms representing a larger rectangle and a smaller one,

as shown in the figure, and giving the area of the parallelogram in terms of vector

components.

Problem 6:

Before considering how to represent the area of a parallelogram spanned by two

vectors, we will state the formula for area for parallelograms (Figure 3).

As is show in the figure, the base of a parallelogram spanned by ~x, ~y may

be given by, k~xk, and the height by kyk sin ✓ where ✓ is the angle between the

two vectors. As figure 4 shows, it is arbitrary whether a vector is chosen to

represent the base or height of the parallelogram.
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Figure 2: Parallelogram composed of simpler geometry

However, this result made be extended to show that this formula is equivalent

to the length of a vector given by the cross product of ~x, ~y. This result is some-

what abbreviated to avoid expanding two trinomial squares and 18 subsequent

terms. The procedure follows analogous lines for showing that determinants in

R2
correspond to areas(see end of quiz).
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Figure 3: Analog of Parallelogram area for Vectors

Ap = k~akk~bk sin ✓

Consider : sin ✓ =

p
1� cos2 ✓

s

1� (a1b1 + a2b2 + a3b3)2

(a21 + a22 + a23)(b
2
1 + b22 + b23)

s
(a21 + a22 + a23)(b

2
1 + b22 + b23)� (a1b1 + a2b2 + a3b3)2

(a21 + a22 + a23)(b
2
1 + b22 + b23)

Considering the whole equation and moving k~akk~bk under the square root,denominators cancel yielding
q

(a21 + a22 + a23)(b
2
1 + b22 + b23)� (a1b1 + a2b2 + a3b3)2

which yields a lovely 18 terms.But, 3 pairs will cancel a21b
2
1, a

2
2b

2
2, a

2
3b

2
3

the remaining terms can be rearranged into 3 binomial squares
p

(a1b2 � a2b1)2 + (a1b3 � a3b1)2 + (a2b3 � a3b2)2 = k~a⇥~bk
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Figure 4: Geometric Importance of cross product

Problem 7:

I like to imagine the component form of the cross product as an example case of

using relationships learned in simpler cases(R2
) and transferring them to a more

complex space (R3
). The cross product is a response to the following questions.

1. If the dot product provides a standard for orthogonality in R2
how might

I consider vector orthogonality in R3
, or ask a similar question about how

”aligned” two vectors are?

2. How might I produce an orthogonal vector to a plane in R3
specified by

two other 3-D vectors?

3. Algebraic equations for geometry in R3

Let’s start with the first question. If we were starting in R2
with knowledge

of linear combinations, dot products, and vector projects, then we understand

that two vectors of various lengths when scaled, and added, span particular

parallelograms. We also know, from both ~x · ~y = k~xkkyk cos ✓ and | det(~x, ~y) |
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that parallelogram area is smaller when the vectors are closer (with respect to

✓ ), that is when they are less orthogonal/more parallel.

Vectors in R3
still define a plane and ✓ still exists, although the plane may not

be parallel to a coordinate plane. Therefore, we might think to talk about 3-D

vector orthogonality by talking about the plane spanned by two vectors in R3
.

However, the component way to do this in R2
was for vectors in R2

, so to use

components in R3
we need something more.

But!, we can use our 2-D component form if we combine it with our knowl-

edge of projections, to encode 2-D information in a 3-D structure, which will

utilize all components in R3
using information from R2

.This idea will be sum-

marized for brevity.

• Consider two vectors ~x, ~y 2 R3
, and then consider their plane projections

in xy-plane, yz-plane, xz-plane. These are mathematically given by taking

the coordinates of the desired plane from ~x, ~y, with third coordinate set

to 0.( The same result follows using projection formula from problem 3).

• Consider these projections as vectors in R2
, taking those coordinates

corresponding to the plane projected in, and excluding the unused di-

mensions.Furthermore, consider the parallelogram spanned by these vec-

tors. Consider what happens to this 2-D parallelogram when our starting

~x, ~y 2 R3
approach co linearity. As ~x ! ~y, each 2-D vector will become

closer and the area of the parallelogram will shrink. Thus we have found

a property in 2-D that is related to the orthogonality(or co linearity) of

our 3-D vectors.

• . Do this procedure for each pair of coordinates for ~x, ~y 2 R3
. Since they

are in 3-D space we have to consider the multiple ways in which they

may not be co linear(For instance if ~x, ~y only have di↵erent z component).

We can only say definitively that they are co linear, when all computed

2-D determinants(areas) are zero. (This is a way to see why the length

of the cross product measures area). Notice too that we have utilized all

components of ~x, ~y.

When thinking about how to usefully encode these values in a 3-D structure,

we consider the second question. Can we use our 2-D determinants to create a

new orthogonal vector in R3
and why does this work? Also is there a way to be

”e�cient” with our information storage. Yes to both!

• There are three determinants to encode, so let’s store them in a vector,

which is a structure in R3

• Let’s store each determinant in our new vector in the component not in-

volved in our determinant computation. This is both a ”smart” encoding

in that information is not repeated/duplicated, and doing so means that

the vector we establish will be orthogonal to our original vector. When

we store values in the ”missing” component( for example we store the
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determinant computed in the xy-plane as the third component of our vec-

tor), we encode the information in a way as to encode a structure that

is independent in a technical sense from our existing vectors, in a simi-

lar manner as to how each basis vector cannot map to another without

additional information that expands the possible linear combinations. In

a rough sense, I like to think that we are incrementally constructing an

orthogonal vector using the size of our determinants to ”tweak” each com-

ponent of our built vector so that if orients itself orthogonal to the plane

in R3
described by ~x, ~y.

• I had really hoped to formally elaborate on this point more, but I think

that, one, I have looked at this problem for to long and need space for my

thoughts on this interpretation to become less muddled. Furthermore, I

think that I lack some of the linear-algebra language to put more elegantly

on paper the visuals that I have in my head that I suspect relate to span

and independence, so I would like to come back to this discussion in maybe

a week or so.

The results of the previous discussion provide for a better understanding of

the component form of the cross product,shown below. For completion we can

show that we now have a mathematical validation for question 2 asked above.

Since the result of the cross product is a vector, we can show that it is indeed

an orthogonal vector relative to either one of its arguments. Below is dthe

definition of the cross product(component form), and proof of orthogonality.

For ~x, ~y 2 R3

~x⇥ ~y :=

2

6666664

det


a2 b2
a3 b3

�

�det


a1 b1
a3 b3

�

det


a1 b1
a2 b2

�

3

7777775
.

=

(a2b3 � b3a2)i� (a1b3 � b1a3)j + (a1b2 � b1a2)k.

Note that based on this definition, by ”recording” determinants, we can see

that the cross product equals zero only if ~x, ~y are colinear in R3
since this is

the only case where each projection of ~x equals each projection of ~y, meaning

that each determinant computes to zero.This gives us a way of talking about

angles/information between vectors in R3
by specifying whether they are parallel

or not.In problem 6 it was shown that the cross product also encodes the area

of the parallelogram spanned by ~x, ~y, which extends our connection between

geometry and algebra for R3
.

The result of the cross product is an orthogonal vector to the ~x, ~y.

~x · (~x⇥ ~y) = 0 same idea follows for other argument

x1(x2y3 � y2x3) + x2(x3y1 � y3x1) + x3(x1y2 � y2x1)

dot product yields a real number

x1x2y3 � x1x3y2 + x2x3y1 � x2y3x1 + x3x1y2 � x3x1y2 = 0.
terms sum to zero, so arguments are orthogonal
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Remark 2 (Thinking in Terms of Projections). The previous result, provides
another way for thinking about the cross product definition in terms of projec-
tions. If the vector representing the cross product is to be orthogonal to ~x, ~y, than
representing it as the sum of a projection vector, and a residual vector should
be the same as simply expressing the residual vector since the projection of an
vector onto an orthogonal plane is 0. Let c denote ~x⇥ ~y (using implementation
above) and ↵,� 2 R

2

4
x2y3 � x3y2
x3y1 � x1y3
x1y2 � x2y1

3

5� proj~x~y(c) = r

proj~x~y(c) =
c · (↵~x+ �~y)

k↵~x+ �~y)k2 · (↵~x+ �~y)

Applying dot product linearity and homogeneity to the numerator

! c · (↵~x+ �~y) = ↵ · c · ~x+ �c · ~y
= ↵ · 0 + � · 0.
so the whole equation becomes

c�~0 = r

Which means that our specification of the cross product has no projection in the
plane spanned by ~x, ~y, and is orthogonal to this plane.

Remark 3. A commonly cited reason for why the second component of our
cross product is negative is so that is corresponds with our right-hand rule for
establishing which of two possible orthogonal vectors is specified by the cross
product. I am not a huge fan of this, because it feels a bit vague or like the math
should establish the precedence for the right-hand tool rather than the converse.
I have an intuition that a more pleasing result could be developed by exploring
the nature of determinants father, but can at least understand why we append a
negative to the second component of the cross product vector. The determinant
between the x and z basis vectors, and other vectors lying in this plane, is positive,
since the z basis vector is clockwise from the x basis vector, and we take the
determinant with x as the left hand argument. Thus if, we want the right-hand
rule to be consistent for all planes, we have to make this determinant negative,
otherwise it would point in the direction of the positive y basis vector which is
diametrically opposed to the direction specified using the right hand rule, in this
case, so we flip it.

1 Some Extended Results

1.1 The law of cosines

(a� b cos ✓)2 + (b sin ✓)2 = c2

c2 = a2 � 2ab cos ✓ + b2 cos2 ✓ + b2 sin2 ✓

c2 = a2 � 2ab cos ✓ + b2(cos2 ✓ + sin
2 ✓)

= a2 � 2ab cos ✓ = b2.
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Figure 5: Problem Context

1.2 Geometric Interpretation of the Dot Product

Use law of cosines, with a,b,c specified in relation to vectors.

| a� b |2=| a |2 + | b |2 �2 | a || b | cos2 ✓
Expand left side first

| a� b |2= (a� b) · (a� b) = (a� b) · a� (a� b) · b
a · a� a · b� a · b� b · b
=| a |2 �2an+ | b |2

)| a |2 �2ab� | b |2=| a |2=| b |2 �2 | a || b | cos2 ✓
a · b =| a || b | cos ✓.

1.3 R2 Determinants Size is Equal to Area

In problem 5, a component form for parallelogram area was given, and was

shown to be equal to the determinant. Area will be non-negative,but the de-

terminant may be negative depending the rotation angle between the vectors

involved. In problem 5, we showed that when the area is positive, then the

component formula works out to be equal to the determinant, but it would be

helpful to show that at any point the determinant will provide useful(accurate)

information about a related parallelogram. The following derivation will provide

for this since talking about the parallelogram with norms rather than compo-

nents will allow us to consider generally how the determinant is related. (A

expansion step below has been omitted for the sake of showing the result more

concisely, but I have it on paper if needed.)
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Ap = kakkbk sin ✓

Consider : sin ✓ =

p
1� cos2 ✓

s

1� (a1b1 + a2b2)2

(a21 + a22)(b
2
1 + b22

s
(a21 + a22)(b

2
1 + b22)(a1b1 + a2b2)2

(a21 + a22)(b
2
1 + b22)

*Intermediate step of expanding product of numerator, and canceling like terms*
s

(a21b
2
2 + a22b

2
1 � 2a1a2b1b2)

(a21 + a22)(b
2
1 + b22)

Adding in kakkbk, denominators cancel =)
q

a21b
2
2 � 2a1a2b1b2 + a22b

2
1

p
(a1b2 � a2b1)2 =| a1b2 � b2a1 |=| det[a, b] | .
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