In Math 48B Lessons $14,15,16,17$, and 18 , we study logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

To begin our exploration, let's recall the rules of powers/exponents.

1. WHAT ARE RULES OF POWERS/EXPONENTS?

Exponent Notation:

$$
N=b^{n}
$$

Product Rule:

$$
b^{n} \cdot b^{m}
$$

Quotient Rule:

$$
\frac{b^{n}}{b^{m}}
$$

Power to a Power:

$$
\left(b^{n}\right)^{p}
$$

Zero Power:

$$
1=\frac{b}{b}=\frac{b^{1}}{b^{1}}
$$

Negative Powers:

$$
\frac{1}{b^{n}}
$$

\qquad

2. WHAT ARE RULES OF LOGARITHMS?

Logarithmic Notation: $\quad n=\log _{b}(N) \quad$ and $\quad m=\log _{b}(M)$

Product Rule:
$\log _{b}(M \cdot N)$

Quotient Rule: $\quad \log _{b}\left(\frac{M}{N}\right)$

Power to a Power: $\quad \log _{b}\left(N^{p}\right)$

Inverse Exponential: $\quad \log _{b}\left(b^{n}\right)$

Inverse Log:
$b^{\log _{b}(N)}$

Change of Base:
$\log _{b}(N)$

3. HOW TO USE LOG RULES?

Use the properties of logs we explored in problem 2 above to evaluate the logarithm in each problem:

3A. $\log _{8} 32+\log _{8} 2$
3B. $\log _{81}(\sqrt[7]{3})$

3C. $\log _{a}\left(a^{9}\right)$
3D. $(5)^{\log _{5}(125)}$
\qquad
\qquad

4. HOW TO SOLVE EXPONENTIAL EQUATIONS?

Solve the algebraic exponential equation: $\quad 4^{3 x}=16$
4A. Use the inverse operation known as "equating exponent" to solve algebraically 4B. Use the inverse operation known as logarithms to solve algebraically 4C. Use a graphical technique to solve this algebraic equation

5. HOW TO SOLVE EXPONENTIAL EQUATIONS?

Solve each of the algebraic equations below.

5A. $8^{x+3}=64$
5B. $2^{x-4}=\sqrt[3]{2}$
5C. $\log _{2}(8-6 x)=5$
5D $\log (x)+\log (x-3)=1$

5E. $2^{x+3}=3^{x}$
5F. $4 \ln (2 x)=8$
5F. $\ln \left(x^{2}\right)=\ln (3 x+4)$

