Name:

Class #:

Math 48B, Lesson 17: Exponential and Logarithmic Equations

In Math 48B Lessons 14, 15, 16, 17, and 18, we study logarithmic functions:

Logarithmic Form	Exponential Form
$y = \log_b(x)$	$x = b^{y}$

To begin our exploration, let's recall the rules of powers/exponents.

 b^n

 $b^{\overline{m}}$

 $\frac{1}{b^n}$

1. WHAT ARE RULES OF POWERS/EXPONENTS?

Exponent Notation: $N = b^n$

Product Rule: $b^n \cdot b^m$

Quotient Rule:

Power to a Power: $(b^n)^p$

Zero Power:	1 —	b	_	b^1
Zelo Powel.	1 —	b		b^1

Negative Powers:

2. WHAT ARE RULES OF LOGARITHMS?

Logarithmic Notation: $n =$	$\log_b(N)$	and	$m = \log_b(M)$
-----------------------------	-------------	-----	-----------------

Product Rule: $\log_b(M \cdot N)$

Quotient Rule:

 $\log_b\left(\frac{M}{N}\right)$

Power to a Power: $\log_b(N^p)$

Inverse Exponential: $\log_b(b^n)$

Inverse Log:

 $b^{\log_b(N)}$

Change of Base:

 $\log_b(N)$

3. HOW TO USE LOG RULES?

Use the properties of logs we explored in problem 2 above to evaluate the logarithm in each problem:

3A.	$\log_8 32 + \log_8 2$	3C.	$\log_a(a^9)$
3B.	$\log_{81}(\sqrt[7]{3})$	3D.	$(5)^{\log_5(125)}$

4. HOW TO SOLVE EXPONENTIAL EQUATIONS?

Solve the algebraic exponential equation: $4^{3x} = 16$

4A. Use the inverse operation known as "equating exponent" to solve algebraically

4B. Use the inverse operation known as logarithms to solve algebraically

4C. Use a graphical technique to solve this algebraic equation

5. HOW TO SOLVE EXPONENTIAL EQUATIONS?

Solve each of the algebraic equations below.

- 5A. $8^{x+3} = 64$ 5E. $2^{x+3} = 3^x$ 5B. $2^{x-4} = \sqrt[3]{2}$ 5F. $4\ln(2x) = 8$ 5C. $\log_2(8-6x) = 5$ 5F. $\ln(x^2) = \ln(3x+4)$
- 5D $\log(x) + \log(x 3) = 1$