In Math 48B Lessons $14,15,16,17$, and 18 , we study logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

To begin our exploration, let's recall the rules of powers/exponents.

1. HOW TO EVALUATE LOGARITHMS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic Form
Exponential Form

$$
y=\log _{b}(x)
$$

$$
x=b^{y}
$$

Use these two equivalent forms to evaluate the following logarithm problems.
1A. $4+\log _{10}(0.001)$
1B. $\log _{4}\left(\frac{1}{32}\right)$
1C. $\log _{e}\left(e^{2 / 5}\right)$

2. WHAT DOES THE GRAPH OF A LOGARITHM LOOK LIKE?

2A. Fill out the table for the logarithmic function $y=\log _{2}(x)$ below. The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x-intercept, and the end behavior as $x \rightarrow+\infty$.

x	y
$\frac{1}{32}$	
$\frac{1}{16}$	
$\frac{1}{8}$	
$\frac{1}{4}$	
$\frac{1}{2}$	
1	
2	
4	
8	
16	
32	
64	

\qquad
2B. Fill out the table for the common logarithmic function

$$
y=\log _{10}(x)=\log (x)
$$

The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x -intercept, and the end behavior as $x \rightarrow+\infty$.

x	y
0.00001	
0.0001	
0.001	
0.01	
0.1	
1	
10	
100	
1000	
10000	
100000	
1000000	

2C. Suppose that $b>1$ and determine the characteristics of the function

$$
y=\log _{b}(x)
$$

Sketch a graph of this curve below and describe the relevant features of that graph including the domain, range, x-intercept, and the end behavior. Using Desmos.com, graph the log functions with $b=2, e$, and 10 on the same axes. Highlight the various features of each graph.

3. WHAT DOES THE GRAPH OF A LOGARITHM LOOK LIKE?

3A. Fill out the table for the logarithmic function $y=\log _{0.5}(x)$ below. The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x -intercept, and the end behavior as $x \rightarrow+\infty$.

x	y
$\frac{1}{32}$	
$\frac{1}{16}$	
$\frac{1}{8}$	
$\frac{1}{4}$	
$\frac{1}{2}$	
1	
2	
4	
8	
16	
32	
64	

\qquad
3B. Fill out the table for the common logarithmic function

$$
y=\log _{0.1}(x)=\log (x)
$$

The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x-intercept, and the end behavior.

x	y
0.00001	
0.0001	
0.001	
0.01	
0.1	
1	
10	
100	
1000	
10000	
100000	
1000000	

3C. Suppose that $0<b<1$ and determine the characteristics of the function

$$
y=\log _{b}(x)
$$

Sketch a graph of this curve below and describe the relevant features of that graph including the domain, range, x-intercept, and the end behavior.
4. TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS?

4A. For logarithmic function $y=a \cdot \log _{b}(x-h)+k$, what do parameters a, h, and k do to the graph of $y=\log _{b}(x)$? Develop graphs on Desmos.com to highlight each parameter and demonstrate the effect on your graph. Capture

4B. Test your hypothesis from Problem 4A above by graphing the function

$$
f(x)=-2 \log _{3}(x-4)+5
$$

