Class #:

Math 48B, Lesson 14: Exponential Functions

In Math 48B Lessons 14, 15, 16, 17, and 18, we study logarithmic functions:

Logarithmic Form	Exponential Form
$y = \log_b(x)$	$x = b^{y}$

To begin our exploration, let's recall the rules of powers/exponents.

1. WHAT IS AN INVERSE FUNCTION?

- 1A. What does it mean for a function to be one-to-one?
- 1B. What is the horizontal line test?
- 1C. What is an inverse function?
- 1D. When do inverse functions exist?
- 1E. Assume we start with function y = f(x) where every point on the graph of this function is given as (x, y). How do we create the graph of the inverse function?
- 1F. Explain inverse function notation $f^{-1}(x) = y$.

2. WHAT IS THE INVERSE OF AN EXPONENTIAL FUNCTION?

2A. Graph of the exponential function $y = 2^x$ below and then apply the horizontal line test to this function. What can you say about the existence of an inverse?

x	У	(x,y)
-4		
-3		
-2		
-1		
0		
1		
2		
3		
4		
5		
6		

Class # <u>:</u>

2B. Graph the inverse of the exponential function $y = 2^x$ below and then apply the horizontal line test to this function. What can you say about the existence of an inverse?

у	x	(y, x)

2C. Write the input-output relation for the inverse function from Problem 2B above. Then, translate this relation into logarithmic form. Finally, develop a verbal description for logarithmic functions.

3.	HOW TO MOVE BACK AND FORTH FROM LOGS INTO EXPONENTS?
----	--

Consider the two equivalent forms for logarithmic functions:

Logarithmic FormExponential Form $y = \log_b(x)$ $x = b^y$

Write each of the following problems in both forms to find the desired output value.

- 3A. $y = \log_{10}(1000)$ 3E. $y = \log_{16}(64)$ 3B. $y = \log_3(81)$ 3F. $y = \log_{27}(9)$ 3C. $y = \log_2(\frac{1}{32})$ 3G. $y = \log_9(9^5)$
- 3D. $y = \log_5(\frac{1}{125})$ 3H. $y = 5^{\log_5(y)}$

4. WHAT ARE PROPERTIES OF LOGARITHMS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic FormExponential Form $y = \log_b(x)$ $x = b^y$

Using these two equivalent forms, come up with formula to describe the properties of logarithmic functions in each of the following cases.

- 4A. $\log_{b}(1)$
- 4B. $\log_b(b)$
- 4C. $\log_b(b^x)$
- 4D. $b^{\log_b(x)}$

5. WHAT DOES THE GRAPH OF A LOGARITHM LOOK LIKE?

Fill out the table for the logarithmic function $y = \log_3(x)$ below. The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x-intercept, and the end behavior as $x \to +\infty$.

x	у
$\frac{1}{81}$	
$\frac{1}{27}$	
$\frac{1}{9}$	
$\frac{1}{3}$	
1	
3	
9	
27	
81	
243	
729	

6. HOW TO EVALUATE LOGARITHMS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic FormExponential Form $y = \log_b(x)$ $x = b^y$

Use these two equivalent forms to evaluate each of the following logarithms.

- 6A. $y = \log_{10}(100,000)$ 6B. $y = \log_4(32)$ 6C. $y = \log_5(1)$ 6E. $y = \log_{64}(8)$ 6F. $y = \log_7(7)$
- 6D. $y = \log_{64}(8)$