\qquad
\qquad

Math 48B, Lesson 14: Exponential Functions

In Math 48B Lessons $14,15,16,17$, and 18 , we study logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

To begin our exploration, let's recall the rules of powers/exponents.

1. WHAT IS AN INVERSE FUNCTION?

1A. What does it mean for a function to be one-to-one?
1B. What is the horizontal line test?
1 C . What is an inverse function?
1D. When do inverse functions exist?
1E. Assume we start with function $y=f(x)$ where every point on the graph of this
function is given as (x, y). How do we create the graph of the inverse function?
1 F . Explain inverse function notation $f^{-1}(x)=y$.

2. WHAT IS THE INVERSE OF AN EXPONENTIAL FUNCTION?

2A. Graph of the exponential function $y=2^{x}$ below and then apply the horizontal line test to this function. What can you say about the existence of an inverse?

x	y	(x, y)
-4		
-3		
-2		
-1		
0		
1		
2		
3		
4		
6		
5		

Name: \qquad
\qquad
2B. Graph the inverse of the exponential function $y=2^{x}$ below and then apply the horizontal line test to this function. What can you say about the existence of an inverse?

y	x	(y, x)

2C. Write the input-output relation for the inverse function from Problem 2B above. Then, translate this relation into logarithmic form. Finally, develop a verbal description for logarithmic functions.
\qquad
\qquad
3. HOW TO MOVE BACK AND FORTH FROM LOGS INTO EXPONENTS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

Write each of the following problems in both forms to find the desired output value.

3A. $y=\log _{10}(1000)$
3E. $y=\log _{16}(64)$
3B. $y=\log _{3}(81)$
3F. $y=\log _{27}(9)$
3C. $y=\log _{2}\left(\frac{1}{32}\right)$
3G. $y=\log _{9}\left(9^{5}\right)$
3D. $y=\log _{5}\left(\frac{1}{125}\right)$
3H. $y=5^{\log _{5}(y)}$
\qquad
\qquad

4. WHAT ARE PROPERTIES OF LOGARITHMS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

Using these two equivalent forms, come up with formula to describe the properties of logarithmic functions in each of the following cases.

4A. $\log _{b}(1)$
4B. $\log _{b}(b)$
4C. $\log _{b}\left(b^{x}\right)$
4D. $b^{\log _{b}(x)}$

5. WHAT DOES THE GRAPH OF A LOGARITHM LOOK LIKE?

Fill out the table for the logarithmic function $y=\log _{3}(x)$ below. The, use Desmos.com to create a graph and describe the relevant features of that graph including the domain, range, x -intercept, and the end behavior as $x \rightarrow+\infty$.

x	y
$\frac{1}{81}$	
$\frac{1}{27}$	
$\frac{1}{9}$	
$\frac{1}{3}$	
1	
3	
9	
27	
81	
243	
729	

\qquad
\qquad

6. HOW TO EVALUATE LOGARITHMS?

Consider the two equivalent forms for logarithmic functions:

Logarithmic Form

$$
y=\log _{b}(x)
$$

Exponential Form

$$
x=b^{y}
$$

Use these two equivalent forms to evaluate each of the following logarithms.

6A. $y=\log _{10}(100,000)$
6E. $y=\log _{64}(8)$
6B. $y=\log _{4}(32)$
6C. $y=\log _{5}(1)$
6D. $y=\log _{64}(8)$

