\qquad
\qquad

In Math 48B Lessons 11, 12, and 13, we study exponential functions:

$$
y=b^{x}
$$

To begin our exploration, let's recall the rules of powers/exponents.

1. WHAT ARE RULES OF POWERS/EXPONENTS?

Powers vs exponents:

$$
y=x^{n}
$$

$y=b^{x}$

Product Rule:
$b^{n} \cdot b^{m}$

Quotient Rule:

$$
\frac{b^{n}}{b^{m}}
$$

Zero Power:

$$
1=\frac{b}{b}=\frac{b^{1}}{b^{1}}
$$

Negative Powers:

$$
\frac{1}{b^{n}}
$$

[^0]$\left(b^{n}\right)^{p}$
2. WHAT IS EXPONENTIAL GROWTH?

2A. Fill in the table below. To the best of your ability, fill this table out by hand.

x	$f(x)=2^{x}$	$g(x)=4^{x}$	$h(x)=5^{x}$	$j(x)=10^{x}$
-4				
-3				
-1				
0				
1				
2				
2				
2				

2B. Graph the functions $f(x), g(x), h(x)$, and $j(x)$ from problem 2A above.

Name:
Class \#:

2C. Identify patterns in the graphs of the functions $f(x), g(x), h(x)$, and $j(x)$ from problems 2 AB above. Make a conjecture about the general behavior of the graph of the function

$$
y=b^{x} \quad \text { for } \quad 1<b
$$

In your conjecture, identify the domain, range, y-intercept, and the end behavior as $x \rightarrow-\infty$ as well as $x \rightarrow+\infty$.
3. WHAT IS EXPONENTIAL DECAY?

3A. Fill in the table below. To the best of your ability, fill this table out by hand.

x	$F(x)=\left(\frac{1}{2}\right)^{x}$	$G(x)=\left(\frac{1}{4}\right)^{x}$	$H(x)=\left(\frac{1}{5}\right)^{x}$	$J(x)=\left(\frac{1}{10}\right)^{x}$
-4				
-3				
-2				
-1				
1				
2				
2				
2				

3B. Graph the functions $F(x), G(x), H(x)$, and $J(x)$ from problem 3A above.

Name:
Class \#:

\qquad
3C. Identify patterns in the graphs of the functions $F(x), G(x), H(x)$, and $J(x)$ from problems 3AB above. Make a conjecture about the general behavior of the graph of the function

$$
y=b^{x} \quad \text { for } \quad 0<b<1
$$

In your conjecture, identify the domain, range, y-intercept, and the end behavior as $x \rightarrow-\infty$ as well as $x \rightarrow+\infty$.
4. TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS?

4A. For exponential function $y=a \cdot b^{x-h}+k$, what do parameters a, h, and k do to the graph of $y=b^{x}$?

Name:
Class \#:

4B. Test your hypothesis from Problem 4A above by graphing the function below.

x	$f(x)=2^{x}$	$g(x)=2^{x+2}$
-4		
-3		
-2		
-1		
0		
1		
2		
3		
4		
5		
6		
7		

Name:
Class \#:

4C. Test your hypothesis from Problem 4A above by graphing the function below.

x	$f(x)=2^{x}$	$g(x)=2^{x}+6$
-4		
-3		
-2		
-1		
0		
1		
2		
3		
4		
5		
6		
7		

Name: Class \#: \qquad

4D. Test your hypothesis from Problem 4A above by graphing the function below.

x	$f(x)=2^{x}$	$g(x)=-2^{x}$
-4		
-3		
-2		
-1		
0		
1		
2		
3		
4		
5		
6		
7		

4 E . How is your work on problems 4 ABC related to the general transformations:

$$
g(x)=a f(x-h)+k
$$

\qquad
5. QUADRATIC VERSUS EXPONENTIAL GROWTH?

5A. Fill out the table below

x	$f(x)=x^{2}$	$f(x+1)-f(x)$
0		
1		
2		
3		
4		
5		

5B. Fill out the table below

x	$g(x)=2^{x}$	$g(x+1)-g(x)$
0		
1		
2		
4		
4		

Name:
Class \#:
5C. Graph $f(x)=x^{2}$ and $g(x)=2^{x}$ below. What behavior do you notice? Which one is growing more quickly well as $x \rightarrow+\infty$.

[^0]: Power to a Power:

