3. (8 points) Evaluate the integral:

$$
\iiint_{D} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V
$$

where D is the unit ball in \mathbb{R}^{3} centered at the origin. (Hint: try a change of variables into spherical coordinates).
3. Evaluate the Integral: $\iiint^{\left(x+i y^{2}+t=\right)^{2 / 2}} d v$ where Dis the unit ball in \mathbb{R}^{3} centered at the origin.
 $r=p \sin \phi$ $z=\rho \cos \phi$

$$
r^{2}+z^{2}=p^{2}
$$

$d v=$ "volume" of sphencal box (shaded ondiagram) $=$ length x width \times ereiget $=e \times \omega \times \Omega$
$=p \Delta \phi \times r \Delta \theta \times \Delta p$ $=\rho \Delta \phi \times \rho \sin \phi \times \Delta p$ $=p^{2} \sin \phi \Delta \phi \Delta \theta \Delta p$
$x=r \cos \theta$
$y=r \sin \theta$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& r^{2}+z^{2}=p^{2} \\
& \Rightarrow x^{2}+y^{2}+z^{2}=r^{2}+z^{2}=p^{2}
\end{aligned}
$$

$$
\Rightarrow I=\int_{D} e^{e_{x^{2}+y^{2}+2 e s 3 / 2}} d V
$$

This integral is difficult impossible to do in cartesian coordinates, so we translate to spherical

$$
\begin{aligned}
& =\iiint_{0} e^{\left(p^{21} 1 / 2\right.} d v=\int_{D} e^{p^{s}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\alpha \pi} e^{p^{3}} p^{2} \sin \phi d \theta d \phi d p
\end{aligned}
$$

Inner integral: $\quad \int_{0}^{5 \pi} e^{p^{3}} \rho^{2} \sin \phi d \theta$

$$
\begin{aligned}
& =\left.e^{\rho^{3}} \rho^{2} \sin \phi \theta\right|_{0} ^{2 \pi} \\
& =2 \pi e^{\rho^{3}} \rho^{2} \sin \phi-0=2 \pi e^{\rho^{3}} \rho^{2} \sin \phi
\end{aligned}
$$

Middle integral: $\int_{0}^{2} 2 \pi e^{\rho^{3}} \rho^{2} \sin \phi d \phi$

$$
=2 \pi e^{r s} p^{2} \int_{0}^{\pi} \sin \phi d \phi
$$

Middle integral $($ continued $)=$

$$
\begin{aligned}
& 2 \pi e^{p^{3}} \rho^{2} \int_{0}^{\pi} \sin \phi d \phi \\
& =2 \pi e^{\rho^{3}} \rho^{2}(-\cos \phi) 1_{0}^{\pi} \\
& =2 \pi e^{\rho^{3}} \rho^{2}(-\cos (\pi)-(-\cos (0))) \\
& =2 \pi e^{p^{3}} \rho^{2}(1+1) \\
& =4 \pi e^{\rho^{3}} \rho^{2} \\
& \text { OUter integral: } \int_{0}^{1} 4 \pi e^{p^{3}} \rho^{2} d \rho=4 \pi \int_{0}^{1} e^{\rho^{3}} \rho^{2} d \rho
\end{aligned}
$$

u-substitution Let $u=p^{3}$

$$
\begin{aligned}
& \quad d u=3 p^{2} d p \Rightarrow \frac{1}{3} d u=p^{2} d p \\
& \Rightarrow 4 \pi \int_{0}^{1} \frac{1}{3} e^{4} d u \\
&=\frac{4}{3} \pi \int_{0}^{1} e^{x} d u \\
&=\frac{4 \pi}{3}\left(e^{-u} 10\right) \\
&=\frac{4}{3} \pi\left(e^{p} 10_{0}^{1}\right) \\
&= \frac{4}{3} \pi(e-1)
\end{aligned}
$$

Thus,

$$
\iint_{D}^{1} e^{\left(x^{2}+y^{2}+t^{2}\right) 1 / 2} d v=\frac{4}{3} \pi(e-1)
$$

Mistakes:
Ipracticed the derivation of spherical coordinates several tames, so I found this problem fairly straightforward. However. I was overcontident, and confused my ϕ and θ boundaries, resulting in my volumes cancelling out with each other and the integral coming out as zero. I knew this was wrong and didn't make sense as an answer. so I checked my work, but I think a combination of anxiety and sleep deprivation led me to continuously slip this boundary and focus on finding a flaw in my integration. I ran out of time to check my work, and left what I had For future integrals, I think taking the time to write out the domain will help make my double checking more efficient, and thus possibly prevent silly mistakes like this.

