For problems 1-4, let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a two-variable function with explicit representation $z=f(x, y)$. Let $A(a, b, f(a, b))$ be a point on the surface

$$
S_{f}=\{(x, y, z):(x, y) \in D \text { and } z=f(x, y)\}
$$

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ be a unit vector in the domain of function f.

1. (6 points) Please derive the limit definition of the directional derivative from first principles. If you're confused where to start, please follow the 5 steps process to constructing a derivative that we discussed in our Lesson 11 videos.
1)

Let $z=f(x, y)$ define a surface whee $f(x, y)$ is differtiable Let point $(a, b, f(a, b)$ be a point on the surface

$$
S f=\{(x, y, z):(x, y) \in 0 \text { and } z=f(x, y) \xi
$$

Let $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle \in \mathbb{R}^{2}$ be a unit vector in the $x y$-plane, the domain of f

We have to find the slope of a tangent line to our given surface $\bar{z}=f(x, y)$ at an input in a general direction defined by the unit vector
Using the 5 steps from Lesson 11 he will derive the limit definition of the diectionae derivative from first principles.
(i) Graph a curve \& related to the given function

- We can create a vertor-valued equation with a single parameter h

$$
\begin{aligned}
\Rightarrow \vec{l}(h) & =\vec{p}_{0}+h \cdot \vec{u} & \text { from } & :
\end{aligned} \begin{aligned}
\vec{p}_{0} & =\left\langle a_{1} b\right\rangle \\
& =\left\langle a_{1} b\right\rangle+h \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{aligned} r l h l y=\text { parameter }
$$

- Notice where $z=f(x, y)$, then $z(h)=f(\vec{l}(h))$

2) Find two pts \& drain a recent line

$$
\begin{array}{rlr}
\therefore \vec{l}(h) & =\langle a, b\rangle+h\left\langle u_{1}, u_{2}\right\rangle & \text { (parameterized } \\
& =\vec{p}_{0}+h \cdot \vec{u} & \text { secant } \\
& =\left\langle a+h u_{1}, b+h u_{2}\right\rangle & \text { line } \\
& =\langle x(h), y(h)\rangle \\
\vec{P} 0 & =(a, b) & \\
\vec{p} & =\left(a+h u_{1}, b+h u_{2}\right)
\end{array}
$$

where
G cure
Line $\vec{l}(h)$

(3) Measure the slope of the secant line through points A\& B
\Rightarrow Slope of the secant line algebraically is $m_{A B}=\frac{\text { rise }}{\text { run }}$.

$$
\begin{aligned}
M_{A B}=\frac{\text { rise }}{\text { run }} & \Rightarrow \frac{f(\vec{p})-f(\vec{P})}{\|\overrightarrow{P O P}\|_{2}} \\
& =\frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{\|\overrightarrow{P O P}\|_{2}} \\
& =\frac{f\left(a+h u, b+h u_{2}\right)-f(a, b)}{h} \quad
\end{aligned}
$$

Where h can be $\pm ; h \rightarrow 0^{-}$ $h \rightarrow 0^{+}$
\therefore The siope of $M_{A B}=\frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}$

$$
\Rightarrow \quad \begin{aligned}
& \overrightarrow{\text { Pop }}=\left\langle a+h u_{1}, b+b u_{2}\right\rangle-\langle a, b\rangle \\
&=\left\langle a+h u_{1}-a, b+h u_{2}-b\right\rangle \\
&=\left\langle h \cdot u_{1}, h \cdot u_{2}\right\rangle \\
&=h \cdot\left\langle u_{1}, u_{2}\right\rangle \\
&=h \cdot \vec{u} \\
& \quad \vec{u}=1 \\
&=h \quad b \cdot c:+s \\
&
\end{aligned}
$$

Note about \vec{u} : Since $\|\vec{u}\|=1$; by assumption re travel exactly h units
to get from $P_{0}+P$. The run is simply
h. Where h is a signed distance.

$$
\begin{aligned}
& =h \quad \text { aunit reit } \\
\Rightarrow \overrightarrow{P O P} \|_{2} & =\|h \cdot U\|_{2} \text { unitrecto } \\
& =|h| \cdot \| \overrightarrow{\|_{2}} \text { magnate }=1 \\
& \equiv|h| \quad \text { (homogeneity) }
\end{aligned}
$$

where

$$
=\sqrt{\left(h u_{1}\right)^{2}+\left(h u_{2}\right)^{2}}
$$

$$
=\sqrt{h^{2}\left(u_{1}^{2}+u_{2}^{2}\right)}
$$

$$
\begin{aligned}
& h{ }^{c a n} b e=\sqrt{h^{2}\left(u_{1}{ }^{2}+u_{2}^{2}\right)} \\
& m ; h^{\circ}>0^{+}>=\sqrt{h^{2}} \cdot \sqrt{u_{1}{ }^{2}+u_{2}{ }^{2}} \\
& h>h
\end{aligned}
$$

2. (4 points) Using the limit definition for the directional derivative of f in the direction of \mathbf{u} at the point (a, b) that you derived in problem 1 above, show how to construct a composite function $g(t)$. This single variable function should have the property that the derivative $g^{\prime}(t)$ is the same value as the limit we constructed to compute the directional derivative in problem 1.
2) We drow the secant line through points A a B on the curved given by $z=f(x, y)$. Ne know if re move along $\bar{\lambda}(h)$ in the domain of $z=f(x, y)$ recan trace a curve \& along the surface whee the outputs on $\&$ are given by

$$
z(h)=f\left(\vec{l}(h)=f(x(h), y(h))=f\left(a+h u_{1}, b+h u_{2}\right)\right.
$$

The plane 1 to $x y$-plane contains the parameterized line $\vec{l}(h)$.
The curve $\&$ is given by:

$$
C=\xi<x(h), y(h), f(x(h), y(h)): h \in I \subset \in \mathbb{R} \xi
$$

Where $0 \in I$ for $x(0)=a \quad$ and $I=(-\varepsilon, \varepsilon)$

Recall from the ordinary derivative in Math IA:

$$
f(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { (difference quotient) }
$$

h is a sign sensitive parameter! We said in Math IA that the limit of a function is also sign sensitive. Whee the limit of $f(x)$ as \times approaches a is L

$$
\lim _{x \rightarrow a} f(x)=L \lim _{x \rightarrow a} \frac{F(x)-F(a)}{x-a}
$$

if for any number $\varepsilon>0$ there is a corresponding number $\varepsilon>0$ ST $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$. The value of f in the precise definition of a limit depend only on ε which is why when re graph the intersection of a plane through the pant $(a \operatorname{b}, \mathrm{f}(a, b)$ with the normal vector $\vec{n}=\left\langle-u_{2}, u_{1}, 0\right\rangle$ and the surface $z=f f x, y$), we must understand " h " can approach \pm valves from the letthand side and righthond sics when he evaluate the slope of the seat line. The curve $\dot{C}=\{(x(h) \cdot y(h), z(h)>: h \in I \in \mathbb{R}\}$ where $h \in I \subset \mathbb{R}$ for $I=(-\varepsilon, \varepsilon)$ to indicate the signed distance
(4) Now we transform the secant line into a tanker line using a limiting process

$$
\Rightarrow M_{A_{B}}=\frac{f(\vec{p})-f\left(\vec{p}_{0}\right)}{\left\|\overrightarrow{P_{0}} \vec{P}\right\|_{2}} \equiv \frac{f\left(a+h w_{1}, b+h u_{2}\right)-f\left(a_{1} b\right)}{h}
$$

"apply the limit definition where:

$$
\lim _{\vec{p} \longrightarrow \vec{p}_{0}} \frac{f(\vec{p})-f\left(\vec{P}_{0}\right)}{\left\|\overrightarrow{P_{0}}\right\|_{2}}
$$

(5) Construct the "derivative" as the slope of the tangent line

$$
\Rightarrow \lim _{\vec{p} \rightarrow \vec{p}_{0}} \frac{f(\vec{p})-f(\vec{p})}{\left\|\overrightarrow{p_{0}}\right\|_{2}}=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right\rangle-f(a, b)}{h}
$$

When this limit exists, it's called the diectionce derivative of f at point carte in the diection of \vec{u}, whee r \tilde{u} is a unit vector in a general direction.
$\therefore D \hat{u} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u, b+h u_{2}\right)-f(a, b)}{h}$ /where $h \in I \subset \mathbb{R}$,

$$
I=(-\varepsilon, \varepsilon)
$$

meaning $h \rightarrow 0^{-}$\& $h \rightarrow 0^{+}$

In problem 1. $D \bar{u} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}$.
We can construct a composite function $g(t)$ using the direction of \vec{u} and the point (a, b).

Ne said previously using the limit definition with parameter h resented for secant lines, that the parameterized line $\vec{X}(h)$ can be crafted by $\vec{l}(h)=\vec{P}_{0}+h \cdot \vec{u}$.

From Problem \# 1

- uses parameter "h"

$$
\begin{aligned}
\Rightarrow \lambda(h) & =\vec{P}_{0}+h \cdot \vec{u} \\
& =\langle a, b\rangle+h \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

\Rightarrow where $z=f(x, y)$, then

$$
\begin{aligned}
z(h) & =f(\vec{\lambda}(h)) \\
\text { or, } g(h) & =f(\vec{\lambda}(h)) \\
& =f\left(a+h u_{1}, b+h u_{2}\right)
\end{aligned}
$$

I/ from $\lambda(h)=\vec{p}_{0}+h \cdot \vec{u}$

$$
\begin{aligned}
& =\langle a, b\rangle+h \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& =\left\langle a+h u_{1}, b+h u_{2}\right\rangle \\
& =\left\langle x\left(h_{x}\right\rangle, y(h)\right\rangle
\end{aligned}
$$

Vs. Now Problem \#2

- uses parameter "t"

$$
\begin{aligned}
\Rightarrow \vec{l}(t) & =\vec{P}_{0}+t \cdot \vec{u} \\
& =\left\langle a_{1} b\right\rangle+t \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

\Rightarrow Where $z=f(x, y)$, then

$$
\begin{aligned}
& z(t)=f(\vec{l}(t)) \\
& \text { Or, } \begin{aligned}
g(t) & =f(\vec{l}(t)) \\
& =\underbrace{f\left(a+t u_{1}, b+t u_{2}\right)} \\
& =\vec{l}(t) \\
& =\overrightarrow{P_{0}}+t \vec{u} \\
& =\left\langle a_{1} b\right\rangle+t \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& =\left\langle a+t u_{1}, b+t u_{2}\right\rangle \\
& =\langle x(t), y(t)\rangle
\end{aligned}
\end{aligned}
$$

We can continue to transform $g(t)=f(\vec{l}(t))$ using $g(h) \& g(0)$ line re used $Z(h)=f(\vec{\lambda}(h))$ where $f(\vec{P}) \leqslant f\left(\vec{P}_{0}\right)$.
From Problem $\# 1$

$$
\Rightarrow M_{A B}=\frac{f(\vec{P})-f\left(\vec{P}_{0}\right)}{\|\overrightarrow{P O P}\|_{2}}
$$

Vote: $M_{A B}=\frac{g(h)-g(0)}{\|\overrightarrow{P \circ \rho}\|_{2}}$
N aw for Problem H2

$$
\Rightarrow M_{A B}=\frac{g(t)-g(0)}{\left\|\overrightarrow{P_{O P}}\right\|_{2}}
$$

Note: $g(t)=f\left(\vec{x}(t)=f\left(a+t u_{1}, b+t u_{2}\right)\right.$
Where

$$
g(h)=f(\vec{l}(h))=f\left(a+h u_{1}, b+h u_{2}\right)
$$

$$
\begin{aligned}
\Rightarrow g(h) & =f(\vec{l}(h))=f\left(a+h u_{1}, b+h u_{2}\right) \\
\Rightarrow M_{A B} & =\frac{g(h)-g(0)}{\|\vec{P} \vec{P}\|_{2}} \\
& =\xrightarrow{f\left(a+h\left(u, b+h u_{2}\right)-f(a, b)\right.} \\
& \xrightarrow{l}
\end{aligned}
$$

see
No ch from problem 7

Notice for $f\left(a+h u_{1}, b\right.$ thu $\left.u_{2}\right)$ re can rewrite in terms of $X(h) \frac{1}{9} y(h)$ from

$$
\begin{aligned}
g(h)=f(\vec{l}(h) & =f(x(h), y(h)) \\
& =f\left(a+h u_{1}, b+h u_{2}\right)
\end{aligned}
$$

ve can apply the limit definition again

$$
\Rightarrow \lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f\left(a_{1} b\right)}{h}
$$

Note: For $f(a, b)$ when $h \rightarrow 0$,

$$
\begin{aligned}
& \vec{l}(0)=\langle a, b\rangle+0 \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& \vec{\lambda}(0)=\langle a, b\rangle \\
& \vec{\lambda}(0)=f(x(0), y(0)) \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(x(h), y(h))-f(x(0), y(0))}{h} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(\vec{\lambda}(h))-f(\vec{l}(0))}{h} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}
\end{aligned}
$$

(Problentz)" "t"

$$
\begin{aligned}
\Rightarrow g(t) & =f\left(\vec{l}(t)=f\left(a+t u_{1}, b+t u_{2}\right)\right. \\
\Rightarrow M_{A B} & =\frac{g(t)-g(0)}{\left\|\overrightarrow{P_{0} P}\right\|_{2}} \\
& =\frac{f\left(a+t u_{1}, b+t u_{2}\right)-f(a, b)}{\left\|\overrightarrow{P_{O p}}\right\|_{2}}
\end{aligned}
$$

see
worcerom

$$
\begin{aligned}
& \text { problem } 1 \\
& \text { and apply } \\
& \text { steps to } \\
& \text { parameter } \\
& \text { "tu" }
\end{aligned}
$$

We can apply the limit definition

$$
\Rightarrow \lim _{t \rightarrow 0} \frac{f\left(a+t u_{1}, b+t u_{2}\right)-f(a, b)}{t}
$$

Note:

$$
\begin{aligned}
& \vec{l}(t)=\langle a, b\rangle+0 \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& \vec{l}(0)=\langle a, b\rangle \\
& \vec{l}(0)=f(x(0), y(0))
\end{aligned}
$$

and

$$
\begin{aligned}
& g(t)=f(l(t)=f(x(t), y(t)) \\
& \Rightarrow \lim _{t \rightarrow 0} \frac{f(x(t), y(t))-f(x(0), y(0))}{t}
\end{aligned}
$$

$$
\Rightarrow \lim _{t \rightarrow 0} \frac{f(\vec{l}(t)-f(\vec{l}(0)}{t}
$$

$$
\Rightarrow \lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t}
$$

he can apply the limit definition for $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Problem \#1 } \\
\Rightarrow g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}
\end{array} \\
& \text { vs. } \\
& \therefore D_{\vec{u}} f\left((a, b)=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=g^{\prime}(0) \quad \& \quad D_{\vec{u}}(a, b)=\lim _{t \rightarrow 0} \frac{g(0+t)-g(0)}{t}\right. \\
& \therefore \text { For } g(t)=f(l(t)) \text {, then } g^{\prime}(0)=\left.g^{\prime}(t)\right|_{t=0}=D \vec{u} f(a, b)
\end{aligned}
$$

Prooving $g^{\prime}(t)$ is the same value as the limit re constructed to compute the directional derivative in Problem \#1, but in problem \#1 "h" is used and in problem \#2 "t" is used.
3. (4 points) Derive the dot product formula for the directional derivative. Be sure to specifically refer to the the function $g(t)$ from problem 2 above along with the multivariable chain rule with two intermediate variables and one independent variables. When appropriate, please explicitly state and use the multivariable chain rule in your work. Also, make sure to explain the value of t that you use to take the ordinary derivative in this derivation.

Problem \# 3
From the previous problem, we created the composite function $g(t)=f(x, y)=f(x(t), y(t))$ and proved the composite function has the same value as the limit constructed in problem 4 A

Now we can continue to evaluate the directionde derivative of $f a+(a, b)$ to form the dot product formula for the directional derivative.

From the previous problem,

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=D \vec{u} f(a, b)
$$

for $g(t)=f\left(\vec{l}(t)\right.$, then $g^{\prime}(0)=\left.g^{\prime}(t)\right|_{t=0}=D \vec{u} f(a, b)$

$$
\begin{aligned}
\Rightarrow D \vec{u} f(a, b) & =\left.\frac{d}{d t}[g(t)]\right|_{t=0} & \quad(\text { Note: } g(t)=f(\vec{l}(t)=f(x(t), y(t))) \\
& =\frac{d}{d t}\left[\left.f(\vec{l}(t)]\right|_{t=0}\right. &
\end{aligned}
$$

$$
\begin{gathered}
=\left.\frac{d}{d t}[f(x(t), y(t))]\right|_{t=0} \begin{array}{c}
\text { (Note: Use the multivariable chain rue } \\
\text { to continue }
\end{array}
\end{gathered}
$$

(Where $x(t)=\vec{a}^{0}+t u_{1} \quad$)

$$
\left.\begin{aligned}
& =f_{x}(x(0), y(0)) \cdot u_{1}+f_{y}(x(0), y(0) \cdot \underbrace{u_{2}} \\
& =f_{x}(a, h)
\end{aligned} \Rightarrow\right|_{t=0}(t)=u_{2}
$$

$$
\begin{aligned}
& =f_{x}(a, b) \cdot u_{1}+f_{y}(a, b) \cdot u_{2} \\
& =\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\langle 1 .
\end{aligned} \quad \quad \text { (group like terms) }
$$

$$
=\underbrace{\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle} \cdot \underbrace{\left\langle u_{1}, u_{2}\right\rangle} \quad \sqrt{\quad} \quad \text { (group like terms) } \quad \text { (notice the unit vector) }
$$

$$
=\vec{\nabla} f(a, b) \cdot \vec{u}
$$

$$
\begin{aligned}
\therefore D \vec{u} f(a, b) & =\stackrel{\rightharpoonup}{\nabla} f(a, b) \\
\text { Directions } & =\text { gradient. unitvertor }
\end{aligned}
$$

Decivak
Problem $1+3, p g .1$
4. (6 points) Using your work in problem 3, explain which unit vectors $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ in the domain D give
A. the direction of steepest ascent on the surface.
B. the direction of no change on the surface.
C. the direction of steepest descent on the surface.

Please provide evidence that your concept images associated with these directions incorporate multiple categories of knowledge including verbal, graphical, and symbolic representations of these ideas. To earn top scores, your solution should combine the work you did in problem 3 with the cosine formula for the dot product. Also, please make specific connections to between your explanations of each direction and your knowledge of the extreme values of the cosine function.

From problem \#3, we defined the directional derivative of f at point (a, b) to be equal to the dot product of the gradient f and the unit vector $\vec{\omega}=\left\langle w_{1}, v_{2}\right\rangle$ in the domain D. We apply the cosine formula for the dot product, $\vec{x} \cdot \vec{y}=\|\vec{x}\|_{2}\|\vec{y}\|_{2} \cos \theta$ to relate the gradient and the unit vector through a common angle

$$
\begin{aligned}
\Rightarrow \operatorname{Da} f(a, b) & =\stackrel{\rightharpoonup}{\nabla} f(a, b) \cdot \vec{u} \\
& =\|\vec{\nabla} f(a, b)\|_{2} \cdot \underbrace{\|\vec{u}\|_{2}}_{1} \cdot \cos (\theta)
\end{aligned}
$$

$=\|\vec{\nabla} f(a, b)\|_{2} \cdot \cos (\theta)$, where θ is the angle between $\vec{\nabla} f \frac{1}{4} \vec{u}$.
Ne know cosine is restricted from $-1 \leq \cos \theta \leq 1$ for $\theta \in[0,2 \pi]$. cosine has a amain $D[0,2 \pi]$ and a Range Ring $[-1,1]$.

We know from the diectional derivative that the idea of a directional derivative conveys the slope. The directional derivative is a scalar object, a number. Its the rate of change When the point (a, b) in in 2^{3} moves in that direction of the scalar object. The slope $a+P(a, b)$ exists at that unique point to create an instantaneow tanject line re con measure. To figure sur the direction of ascent, descent, or no change re look to wee when Duff (a,b) is the largest the smallest, or doesn't change.

Note: $\nabla f(a, b)$ is perpendicular to the contor through point (a, b) and points where f is increasing Vf shows the slope in the direction of steepest ascent or descent when then intluenas Duff (arb) to be large or male when $\stackrel{\rightharpoonup}{\nabla} f \| \vec{u}$ or $\vec{\nabla} f \perp \vec{u}$ or $-\vec{\nabla} f \| \vec{u}$.
A. The direction of steepest ascent on the surface

Notice when $\cos \theta=1, \theta=0 \& 2 \pi$. We pick the smaller angle and see how the angle describes the behavior of $\overrightarrow{\nabla f} \vec{\imath} \vec{u}$. As \vec{u} varies, the maximum value of the directional derivative is (+) $\vec{\nabla} f$. We know two vectors are 1 when the angle better them is 0 . This indicates \vec{u} is in the same direction of the $\vec{\nabla} f$ perpendicular to the level curve. The unit vector and the gradient of f point in the same direction at the point (a, b) When the anger θ between them is 0 . This produces a directional derivative that he the steepest slope when the gradient of f points in the direction of steepest ascent of the surface and is the slope in that diection. This indicates the diection of steepest ascent an the fastest, or greatest inrear of fwhen ∇f is alligred with \vec{u}.

Notice: $\vec{\nabla} f(a, b) \perp$

Algebraically

$$
\begin{aligned}
\Rightarrow D_{\vec{u}} f(a, b) & =\|\vec{\nabla} f(a, b)\|_{2} \cdot\|\vec{u}\|_{2} \cdot \cos (0) \\
& =\| \vec{\nabla} f\left(a, b \|_{2} \cdot 1 \cdot 1\right. \\
D_{\vec{u} f(a, b)} & =\|\vec{\nabla} f(a, b)\|_{2}
\end{aligned}
$$

The larger valve of $\operatorname{Dif}(a, b)$ is produced by $\vec{\nabla} f$.
B) the direction of no change
 through $P(a, b)$ at points where ff is increasing

When $\theta=\frac{\pi}{2}$, there is no change on of direction on the surface. The directional derivative will be zero, meaning the slope of the line at $P(a, b)$ will be zero $\&$ a horizatul tangut line.

Algebraically

c) the direction of steepest descent on the swan

Here, the directional derivative portrays the greatest rate of decrease of f or the smallest value of $\operatorname{Daf}(a, b)$ when $\overrightarrow{\nabla f}\{\vec{u}$ are antiparallel when $\theta=\pi$. When $\cos (\pi)=-1$, the init vector points in the opposite diertion of the gradient of f, since the gradient always points tower the direction of greatest increase. The Duff (a,b) is minimum and this is the direction of steepest descent or fastest decrease of fwhen $\vec{\nabla} f \geqslant \overrightarrow{\mathrm{u}}$. oppose directions.
Algebraically
Graphically

$$
\begin{aligned}
\Rightarrow D \vec{u} f(a, b) & =\|\stackrel{\rightharpoonup}{\nabla} f(a, b)\|_{2} \cdot \underbrace{\|\vec{u}\|_{2}}_{1} \cdot \cos (\pi) \\
& =\| \nabla f(a, b \|_{2} \cdot \underbrace{}_{1} \cdot 1
\end{aligned}
$$

$D \vec{u} f(a, b)=-\|\vec{\nabla} f(a, b)\|_{2}$
Notice: $\vec{u} \perp$ to level curve

For problems 5-6, let $f(x, y)=15-x^{2}-4 y^{2}+2 x-40 y$.
5. (8 points) Find a vector-valued equation for the tangent line to the level curve

$$
L_{100}(f)=\{(x, y): f(x, y)=100\}
$$

at the point $(-3,-5)$.

Problem \# 5
Given $L_{100}(f)=\{(x, y): f(x, y)=100\}$ at the point $(-3,-5)$, we will create a vecto-valued en for the target line to this level curve.

Notice $f(x, y)=15-x^{2}-4 y^{2}+2 x-40 y$ is not in a easily graphable format. We ca format this function into an ellipse by completing the square

$$
\begin{aligned}
& \Rightarrow 15-x^{2}-4 y^{2}+2 x-40 y=100 \\
& \begin{array}{l}
-15 \\
\Rightarrow-x^{2}-4 y^{2}+2 x-40 y=85 \\
\Rightarrow \frac{-\left(x^{2}-2 x\right)}{4}-\frac{4\left(y^{2}-40 y\right)}{4}=\frac{85}{4} \\
\Rightarrow \frac{-1}{4}\left(x^{2}-2 x+1\right)-1\left(y^{2}+10 y\right)=\frac{85}{4}-\frac{1}{4} \\
\Rightarrow \frac{-1}{4}(x-1)^{2}-1\left(y^{2}+10 y\right)=\frac{85}{4}-\frac{1}{4} \\
\Rightarrow \frac{-\frac{1}{4}(x-1)^{2}-1\left(y^{2}+10 y+25\right)}{4}=\frac{85}{4}-\frac{1}{4}-25 \\
\Rightarrow \\
\frac{-1(x-1)^{2}}{4}+\frac{(y+5)^{2}}{4}=1 \\
\Rightarrow \frac{(x-1)^{2}}{16}+\frac{(y+5)^{2}}{4}=4
\end{array}
\end{aligned}
$$

Notice, this: s our given point!

$$
\frac{(x-1)^{2}}{4^{2}}+\frac{(y+5)^{2}}{2^{2}}=1 \quad
$$

// This is an equation for an ellipse where $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $a=$ length of x-semi $a x i s$
$b=$ length of y-semi $a x i s$
Next we where $P(h, k)$ is $(1,-5), a=-4, b=2$.
equation or the tangent line using $\vec{r}(t)=r_{0}+t \cdot \vec{u}$ Where $\vec{r}_{0}=\langle-3,-5\rangle$, t is our given parameter for the tagat line, and me use implicit differatiation to solve for \vec{v}_{1} the direction of the line.

$$
\begin{aligned}
& \Rightarrow 15-x^{2}-4 y^{2}+2 x-40 y=100 \\
& \Rightarrow \frac{d}{d x}\left[15-x^{2}-4 y^{2}+2 x-40 y\right]=\frac{d}{d x}[100] \\
& \Rightarrow 0-2 x-8 y^{\prime} \cdot y^{\prime}+2-40 \cdot y^{\prime}=0 \\
& \Rightarrow-2 x-4 y y^{\prime}+2-40 y^{\prime}=0 \\
& +2 x \quad-2 \\
& \Rightarrow-8 y y^{\prime}-40 y^{\prime}=2 x-2 \\
& \Rightarrow y^{\prime}(-8 y-40)=2 x-2 \\
& \Rightarrow y^{\prime}=\frac{2 x-2}{-8 y-40} \quad 0 r \frac{d y}{d x}=\frac{2 x-2}{-8 y-40} \\
& \left.\Rightarrow \frac{d y}{d x} \right\rvert\,(-3,-5)
\end{aligned}
$$

Sidework:

$$
\begin{aligned}
& \frac{d y}{d x}=\left.\frac{2 x-2}{-8 y-40}\right|_{(-3 .-5)} \\
& =\frac{2(-3)-2}{-8(-5)-40} \\
& =\frac{-8}{0} \frac{\text { for " } y \text { " }}{\text { for "x" }} \\
& \left.\frac{d y}{d x}\right|_{(-3,-5)}=\langle 0,-8\rangle
\end{aligned}
$$

using this calculation, he construct the vector-valued equation.

$$
\begin{aligned}
\vec{r}(t) & =\vec{r}_{0}+t \cdot \vec{v} \\
\vec{r}(t) & =\langle-3,-5\rangle+t \cdot\langle 0,-8\rangle \\
& =\langle-3+0 t,-5+-8 t\rangle \\
& =\langle-3,-5+-8 t\rangle
\end{aligned}
$$

Graph of Level curve with tangent line:

6. (6 points) On the axes below, sketch the level curve $L_{100}(f)$ and it's the tangent line from problem 5 above. Also, sketch the vector $\mathbf{u} \in \mathbb{R}^{2}$ with tail at point $(-3,-5)$ where \mathbf{u} is the unit vector in the direction of the gradient vector $\nabla f(-3,-5)$ given by

$$
\mathbf{u}=\frac{\nabla f(-3,-5)}{\|\nabla f(-3,-5)\|_{2}}
$$

Now, use full sentences to explain how your graph above relates your knowledge about the shape of the surface $f(x, y)$ and your solution to problem 6 above.

$$
\text { where } \begin{aligned}
\left\langle 2 x-2,-8 y-40^{\circ} \quad\right. & \Rightarrow \nabla f(-3,-5) \\
& =\langle 2 x-2,-8 y-40\rangle \mid(-3,-5) \\
& =\langle 2(-3)-2,-8(-5)-40\rangle \\
& =\langle-8,0\rangle
\end{aligned}
$$

$$
\text { where }\|\vec{\nabla} f(-3,-5)\|_{2}=\sqrt{(-8)^{2}+(0)^{2}}
$$

$$
=\sqrt{64}
$$

$$
\Rightarrow \vec{u}=\frac{\vec{\nabla} f(-3,-5)}{\|\vec{\nabla} f(-3,-5)\|_{2}}=\frac{\langle-8,0\rangle}{\langle-8,0\rangle}=\langle 1,0\rangle
$$

$$
=8
$$

$$
\vec{r}(t)=\langle-3,-5+-8 t\rangle
$$

$$
\begin{array}{r}
\\
-3 \\
-3
\end{array}
$$

increasing
to maximum

Explaination of Surface $f(x, y)$

I/ The surface is an elliptic parabolid.
The gradient, $\stackrel{\rightharpoonup}{\nabla} f$, points in the
direction of steepest ascent. The unit
vector points inward in the positive
direction with a magnitude of 1 .
The gradient is a vector in a certain diertion on the surface $f(x, y)$ and the unit vector is in any direction, generally. From the unique given point (-3,-5), we can further understand how the graph of f changes. From the gradient and the unit vector, we can understand the chang of f os (x, y) changes in the direction of le from the given point $(-3,-5)$. Then re con int the following from $\vec{i}=\frac{\nabla f(-3,-5)}{\|\nabla f(-3,-5)\|_{2}}$, when $\theta=0$,
$\cos \theta=1$, so the directional derivative of f is maximized and its value is $\| \vec{\nabla} f(-3,-s \|$ and that is the direction of steepest ascent and where f has the greatest increase unen $\vec{\nabla} f(-3,-5)$ and the unit vector point in the same direction. The directional derivative has the steppest slope and f has the greatest increase.

