
M2B: SAMPLE EXAM 2, V1A

c� Je↵rey A. Anderson ANSWER KEY

True/False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you’ve chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T F If A 2 R3⇥3 has three pivot columns, then it is possible to find invertible matrices
E1, E2, ..., Ep

2 R3⇥3 such that

E

p

E

p�1 · · ·E2E1A =

2

4
1 0 0
0 1 0
0 0 0

3

5

2. T F Suppose A 2 Rm⇥n and B = RREF(A). Then Col(A) = Col(B).

3. T F Suppose A 2 Rm⇥n with m,n 2 N and m 6= n. The spaces Nul(A) and Col(A) never
share an element in common.

4. T F If A 2 Rm⇥n, then Col(A) = Rm if and only if rank(A) = m

5. T F Suppose A,B 2 R2⇥2. If det(A) = 2 and det(B) = 3, then det(A+B) = 5.



Multiple Choice (60 points: 4 points each) For the problems below, circle the correct response for
each question. After you’ve chosen your answer, mark your answer on your Scantron form. Problems that
are marked “choose all that apply” may have more than one correct answer. In this case, mark all correct
answers.

6. Suppose we are given a matrix A =

2

4
2 1 1
4 5 �2
2 �2 0

3

5.

Find the matrix L 2 R3⇥3 from the LU factorization of A.

A.

2

4
1 0 0
2 1 0
1 �1 1

3

5 B.

2

4
1 0 0

�2 1 0
�1 1 1

3

5 C.

2

4
1 0 0
2 1 0
1 1 1

3

5 D.

2

4
1 0 0
4 1 0
2 �2 1

3

5 E.

2

4
1 0 0

�2 1 0
�1 �1 1

3

5

7. Suppose that U 2 R3⇥3 is the upper triangular matrix from the LU factorization of matrix

A =

2

4
2 1 1
4 5 �2
2 �2 0

3

5

in problem 6 above. What do you know about the product of the diagonal elements of U given by
u11u22u33? Choose all that apply.

A. det(A) = u11u22u33 B. u11u22u33 = 0 C. u11u22u33 = 1

. D. u11u22u33 = �30 E. u11u22u33 = 30

8. The LU Factorization of a given 3⇥ 3 matrix is A =

2

4
2 6 1
0 2 1
1 1 4

3

5 =

2

4
1 0 0
0 1 0

0.5 �1 1

3

5

| {z }
L

2

4
2 6 1
0 2 1
0 0 4.5

3

5

| {z }
U

.

Use the LU factorization of A combined with forward and backward substitution to find the solution to
the linear systems problem

2

4
2 6 1
0 2 1
1 1 4

3

5

2

4
x1

x2

x3

3

5 =

2

4
0
0

�9

3

5

Which of the following gives �x1 + x2 + x3?

A. -2 B. -1 C. 0 D. 1 E. 2

9. Let A =


3 5
1 2

�
. Which of the following are false? Choose all that apply.

A. A

�1 =


2 �5

�1 3

�
. B. det(A) = �1 C. Nul

�
A

T

�
6= ; D. rank(A) = 2 E. Col (A) = R2
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10. Let n 2 N. Recall that the set of polynomials of degree less than or equal to n is denoted as

P

n

= {p(x) : p(x) = a0 + a1x+ · · ·+ a

n

x

n with a

i

2 R for all i = 0, 1, ..., n}

Which of the following is false?

A. P1 ✓ P2

B. P

k

is a subspace of P
n

for all 0  k  n

C. P

n

is a vectors space.

D. The set of constant functions {p(x) : p(x) = c for c 2 R} is a subspace of P
n

E. The set of linear polynomials with nonzero slope is a subspace of P

n

11. Let A =

2

4
�1 0 �2
2 1 1
0 1 �t

3

5
. Find the set of values for which Nul(A) 6= {0}:

A. t = 3 B. t = �3 C. t = 3 or t = �3 D. t 6= 3 E. t 6= �3

12. Suppose A 2 Rm⇥n. Given a vector b 2 Rm, suppose that you know:

I. Vectors z1, z2 2 Rn solve the linear system problem Ax = 0

II. Vectors x⇤
,y

⇤ 2 Rn solve the linear system problem Ax = b.

Which of the following is NOT a solution for the linear system problem Ax = b?

A. x

⇤ + z1 B. y

⇤ + z2 C. x

⇤ + y

⇤ D. 3z1 + x

⇤ � 4z2 E. 2x⇤ � y

⇤

13. Let B =

E3z }| {2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 7 1

3

775 ·

E2z }| {2

664

1 0 0 0
0 1 0 0
0 1 1 0
0 �5 0 1

3

775 ·

E1z }| {2

664

1 0 0 0
3 1 0 0

�2 0 1 0
1 0 0 1

3

775 Find B

�1:

A.

2

664

1 0 0 0
3 1 0 0

�2 1 1 0
1 �5 7 1

3

775 B.

2

664

1 0 0 0
�3 1 0 0
2 �1 1 0

�1 5 �7 1

3

775 C.

2

664

1 �3 2 �1
0 1 �1 5
0 0 1 �7
0 0 0 1

3

775

. D. E

�1
3 · E�1

2 · E�1
1 E.

2

664

1 3 �2 1
0 1 1 �5
0 0 1 7
0 0 0 1

3

775
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14. Ohm’s Law, governing the electrical behavior of resistors, states that the voltage access a resistor depends
linearly on the current running through the resistor. Below is some current and voltage data collected
from an experiment:

Current through Volts across
resistor (mA) resistor (V)

0.0 0.0
1.4 1.5
2.9 3.0
4.7 4.5
6.4 6.0
8.0 7.5
8.5 9.0

We can model this relationship using the linear function v(i) = r · i + b where the positive constant
r measures the resistance value of resistor (k⌦), i represents the current through the resistor (mA), v
measures voltage across resistor (V), and b is the intercept of this model with the vertical axis. Solve
the least-square problem associated with this model and identify the line of best fit below:

A. v = 1.0048 · i+ 0.0357 B. v = 0.0135 · i+ 0.9845 C. v = 0.9845 · i+ 0.0135

. D. v = 0.0357 · i+ 1.0048 E. v = 0.9827 · i+ 0.0253

15. Suppose y,b 2 R3 are given by

y =

2

4
�2
1
0

3

5
, b =

2

4
1
0
1

3

5

Let Y = Span{y} and let Y ? =
⇣
Span{y}

⌘?
. Suppose that

↵y = Proj
Y

(b) = the projection of b onto Y ,

r = Proj
Y

?(b) = the projection of b onto Y

?

Which of the following statements are true? Choose all that apply.

A. ↵y =

2

4
0.8

�0.4
0

3

5 B. ↵y =

2

4
�1.0
0.0

�1.0

3

5
C. r =

2

4
0.2
0.4
1.0

3

5 D. r =

2

4
�1
1
1

3

5
E. y

T

r = 0
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For Problems 16 - 20, assume that the matrix A 2 R4⇥6 is given by

A =

2

664

1 2 �5 �2 6 14
0 0 �2 �2 7 12
2 4 �5 1 �5 �1
0 0 4 4 �14 �24

3

775

16. Find RREF(A):

A.

2

664

1 2 �5 �2 6 14
2 4 �5 1 �5 �1
0 0 �2 �2 7 12
0 0 4 4 �14 �24

3

775 B.

2

664

1 0 0 2 3 7
0 1 0 0 1 1
0 0 1 0 0 2
0 0 0 0 0 0

3

775 C.

2

664

1 2 �2.5 0.5 �2.5 �0.5
0 0 1 1 �3.5 �6
0 0 0 0 1 2
0 0 0 0 0 0

3

775

. D.

2

664

1 2 0 3 0 7
0 0 1 1 0 1
0 0 0 0 1 2
0 0 0 0 0 0

3

775 E.

2

664

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

3

775

17. Which of the following vectors in NOT a solution to Ax = 0?

A.

2

6666664

�2
1
0
0
0
0

3

7777775
B.

2

6666664

3
0
1

�1
0
0

3

7777775
C.

2

6666664

7
0
1
0
2

�1

3

7777775
D.

2

6666664

�4
2
0
0
0
0

3

7777775
+

2

6666664

9
0
3

�3
0
0

3

7777775
E.

2

6666664

6
0
2

�2
0
0

3

7777775
+

2

6666664

�7
0

�1
0

�2
�1

3

7777775

18. Which of the following sets of vectors are linearly dependent? Choose all that apply.

A. {A(:, 1), A(:, 3), A(: 5)} B. {A(:, 2), A(:, 3), A(: 6)} C. {A(:, 1), A(:, 3), A(: 4)}

. D. {A(:, 1), A(:, 4), A(: 5)} E. {A(:, 2), A(:, 4), A(: 6)}

19. Find dim
�
Nul(A)

�
+ dim

�
Nul(AT )

�
:

A. 1 B. 2 C. 3 D. 4 E. 5

20. Which of the following must be true? Choose all that apply.

A. rank

�
A

T

�
= 3 B. Col

�
A

T

�
✓ R6 C.

�
AA

T

��1
exists

. D.
�
A

T

A

��1
exists E. Col(A) = R3
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Free Response

21. (a) (4 pts) Suppose we are given vectors y,b 2 Rm. Let Y = Span{y} and Y

? =
⇣
Span{y}

⌘?
.

Show how to construct the projections

↵y = Proj
Y

(b) and r = Proj
Y

?(b)

by finding an explicit formula for the scalar ↵. Explain your assumptions and draw a diagram to
support your work.

Solution: Let b,y 2 Rm be linearly independent vectors. Recall that in order to project
r = b� ↵y onto Y

?, we need to choose ↵ 2 R such r is orthogonal to y. to this end, we want
to choose ↵ such that

y · r = 0

=) y

T

r = 0

=) y

T (b� ↵y) = 0

=) y

T

b� ↵y

T

y = 0

=) y

T

b = ↵y

T

y

=) ↵ =
y

T

b

y

T

y

=
y · b
kyk22
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(b) (6 pts) Use classical Gram-Schmidt to find an orthogonal basis for Col(A) for A =

2

664

1 �1 2
1 0 �1

�1 1 2
0 1 1

3

775

Solution: To construct an orthogonal basis {v1,v2,v3} for Col(A) we will use the Classical Gram-
Schmidt Algorithm. To this end, let’s initialize our basis by setting

v1 = A(:, 1) =

2

664

1
1

�1
0

3

775

Now, to create our second basis vector v2, we want to project A(:, 2) onto
h
Span {v1}

i?
. To do

so, we use our definition of ↵ from part (a) above and define

v2 =

✓
I4 �

v1 v
T

1

kv1k22

◆
A(:, 2)

= A(:, 2)� v1 v
T

1

kv1k22
·A(:, 2)

= A(:, 2)� v

T

1 A(:, 2)

kv1k22
· v1

We can calculate the dot product and norm from this equation separately as follows:

v1 ·A(:, 2) = v

T

1 ·A(:, 2) =
⇥
1 1 �1 0

⇤

2

664

1
1

�1
0

3

775 = �2, kv1k22 = 3

With this we have

v2 =

2

664

�1
0
1
1

3

775+
2

3

2

664

1
1

�1
0

3

775 =

2

664

�1/3
2/3
1/3

1

3

775 =
1

3

2

664

�1
2
1
3

3

775

We calculate the third basis vector v3 by projecting A(:, 3) on
h
Span {v1,v2}

i?
. We accomplish

this projection on step at a time

v3 =

✓
I4 �

v1 v
T

1

kv1k22
� v2 v

T

2

kv2k22

◆
A(:, 3)

= A(:, 3)� v1 v
T

1

kv1k22
·A(:, 3)� v2 v

T

2

kv2k22
·A(:, 3)

= A(:, 3)� v

T

1 A(:, 3)

kv1k22
· v1 �

v

T

2 A(:, 3)

kv2k22
· v2
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We can calculate inner products and norm from this equation separately as follows:

v1 ·A(:, 3) = v

T

1 ·A(:, 3) =
⇥
1 1 �1 0

⇤

2

664

2
�1
2
1

3

775 = �1, kv1k22 = 3

v2 ·A(:, 3) = v

T

2 ·A(:, 3) =
1

3

⇥
�1 2 1 3

⇤

2

664

2
�1
2
1

3

775 =
1

3
, kv2k22 =

5

3

With this we have

v3 =

2

664

2
�1
2
1

3

775+
1

3

2

664

1
1

�1
0

3

775� 1

5

2

664

�1
2
1
3

3

775 =
1

5

2

664

12
�4
8
1

3

775 =

2

664

2.4
�0.8
1.6
0.2

3

775

Math 2B: Sample Exam 2, V1A c� Je↵rey A. Anderson Page 8 of 14



22. (10 pts) A ride-sharing app called Super was recently released in 2009. During the first six years of it’s
business operations, the Super app has seen spectacular growth in its number of users:

Number of Users
Year (in Millions)
0 0.0
1 0.1
2 0.8
3 1.5
4 2.3
5 3.2
6 5.3

We can model this data using a quadratic function N(t) = a0+a1t+a2t
2 for unknown positive constant

a0, a1, a2. Recall from class that we can set up least-squares problem create this model.

(a) Set up the least-squares model associated with this data set. Explicitly identify the Vandermonde
matrix A and the right-hand side vector b.

Solution:

Recall that the least squares problem is designed to fit data collected during an experiment to
a particular mathematical model. In this case, we are told that our company collected seven
data points {(t

i

, N

i

)}6
i=0, where

t

i

= the number of years that the company Super has been in business for i = 0, 1, ..., 6

N

i

= the number of people using the Super app during year t
i

for i = 0, 1, ..., 6

We notice that the model appears to fit a quadratic model N(t) = a0 + a1t+ a2t
2 for unknown

parameters a

o

, a1, a2 2 R. This model can be used to predict the internal force stored within
the spring :

N(t
i

) = a0 + a1ti + a2t
2
i

.

The di↵erence between the observed data and the model prediction is known as the model error
in the ith term, given by:

e

i

= (N
i

�N(t
i

)) =
⇣
N

i

�
�
a0 + a1ti + a2t

2
i

� ⌘

This is a quantitative measurement of the error between our model and the collected data. For
our least-squares problem, we want to minimize the total squared error for each data point. In
other words, we want to find parameters a0, a1, a2 so minimize the function

6X

i=0

e

2
i

=
⇣
N

i

�
�
a0 + a1ti + a2t

2
i

� ⌘2
= kb�Axk22 (1)
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where we define

A =

2

666666664

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36

3

777777775

, x =

2

4
a0

a1

a2

3

5
, b =

2

666666664

0.0
0.1
0.8
1.5
2.3
3.2
5.3

3

777777775

When attempting to solve this least squares problem, we want to find a vector x

⇤ 2 R3 that
solves the optimization problem

min
x2R3

kb�Axk22

This optimal x⇤ will define parameters a0, a1, a2 for the quadratic polynomial of “best fit” for
this data set.

Remark:

The reason that we choose to measure total error using the sum-of-squared errors equation (1)
of the individual error terms relates directly to our knowledge of multivaraible calculus and to
the inner product formula for the two-norm of a vector.

• We recall that when optimizing a multivariable function using calculus, we apply the
second derivative test. To do so, we need to identify critical points (where the gradient
is zero) and then do some analysis at those points. In general, the derivatives of power
functions x

n for some n 2 N are very straight forward. Thus, when we establish the
squared-error e2

i

, we set ourselves up well to optimize this function using technique from
calculus. While this does provide a solution mechanism, the algebra and arithmetic of
optimization are prohibitively time consuming.

• Recall that for any r 2 Rm, we can use the inner-product formula for the 2-norm to write

krk22 = r · r.

This is extremely helpful because the inner product operation has a geometric interpre-
tation (the cosine formula for the inner product). Thus, we can translate a minimization
problem into a geometry problem. This technique helps us to avoid the tedium of calcu-
lus based optimization. Moreover, because we can model our minimization problem using
matrices, we have translated our minimization problem into a matrix analysis problem
for which we have lots of powerful tools. This is the other reason we use the squares error
terms to solve mathematical modeling problems.

• Students who want to pursue greater depths about this choice of squared errors: Look into
the di↵erence between a Banach Space and a Hilbert Space. This is very much related to
the choice of squared errors in the least-squares problem.
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(b) Solve this least-squares problem to produce the best-fit quadratic function. If you use a calculator,
be sure to explain the process you used to find your answer.

Solution: We want to solve the least-squares problem

min
x2R3

kb�Axk22

for the Vandermonde matrix A 2 R7⇥3 and b 2 R7 described in the problem statement. We know
that the theoretic solution to this problem is to project b onto the orthogonal complement of Col(A).
In other words, we want to choose x 2 R3 such that the residual vector

r = b�Ax

is orthogonal to the column space of A. Thus, we want to choose x such that

r 2
h
Col(A)

i?
=) r 2 Nul(AT ) by Thm 3 p. 335

=) A

T

r = 0 by definition of Null Space

=) A

T (b�Ax) = 0 by definition of r

=) A

T

b�A

T

Ax = 0 by distributivity of matrix mult

=) A

T

Ax = A

T

b

By Theorem 14 on p. 363, we know that AT

A is invertible if and only if rank(A) = 3. We see that
our A in this problem has three pivot columns and thus the Gram matrix A

T

A is invertible. Then,
to solve our least-squares problem, we will solve the normal equation associated with this matrix
model given by

A

T

Ax = A

T

b

where we calculate each of these matrices using the technology of our choice (i.e. a TI Calculator).
The resulting linear systems problem is given by

2

4
7 21 91

21 21 441
91 441 2275

3

5

2

4
a0

a1

a2

3

5 =

2

4
13.2
63.2
324.4

3

5

We can solve this linear-systems problem using any method we prefer to find

2

4
a0

a1

a2

3

5 ⇡

2

4
0.02381
0.04286
0.13333

3

5

Thus, the quadratic function of best fit is given by

N(t) = 0.02381 + 0.04286 · t+ 0.13333 · t2
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23. Recall that for A 2 R3⇥3, the determinant of A was given by

det(A) =
X

⇡2S3

sgn(⇡) a
⇡(1),1 a⇡(2),2 a⇡(3),3

(a) (5 pts) List all permutations ⇡ 2 S3. In other words, list all maps ⇡ : {1, 2, 3} ! {1, 2, 3} that are
one-to-one and onto.

Solution: Consider S3, the permutation group on a set with three elements. We know that
for each i 2 {1, 2, ..., 6}, we have permutations

⇡

i

: {1, 2, 3} �! {1, 2, 3}

that are both one-to-one and onto. From our theorem above, we know that S3 contains exactly
3! = 6 di↵erent permutations. We will label these permutations here. Consider:

⇡1 :=

✓
1 2 3
1 2 2

◆
, ⇡2 :=

✓
1 2 3
2 3 1

◆
, ⇡3 :=

✓
1 2 3
3 1 2

◆
,

⇡4 :=

✓
1 2 3
3 2 1

◆
, ⇡5 :=

✓
1 2 3
1 3 2

◆
, ⇡6 :=

✓
1 2 3
2 1 3

◆

To investigate inversions with respect to each ⇡

i

, we need to consider three di↵erent pairs:

(1, 2) (1, 3) (2, 3)

We see that Inv(⇡
i

) = {(1, 3), (2, 3)} are given by

Inv (⇡1) = ; =) n(⇡1) = 0

Inv (⇡2) = {(1, 3), (2, 3)} =) n(⇡2) = 2

Inv (⇡3) = {(1, 2), (1, 3)} =) n(⇡3) = 2

Inv (⇡4) = {(1, 2), (1, 3), (2, 3)} =) n(⇡4) = 3

Inv (⇡5) = {(2, 3)} =) n(⇡5) = 1

Inv (⇡6) = {(1, 2)} =) n(⇡6) = 1

We can use this data to confirm that

sgn(⇡1) = (�1)n(⇡1) = (�1)0 = +1

sgn(⇡2) = (�1)n(⇡2) = (�1)2 = +1

sgn(⇡3) = (�1)n(⇡3) = (�1)2 = +1

sgn(⇡4) = (�1)n(⇡4) = (�1)3 = �1

sgn(⇡5) = (�1)n(⇡5) = (�1)1 = �1

sgn(⇡6) = (�1)n(⇡6) = (�1)1 = �1

With this, we are ready to build the determinant function for 3⇥ 3 matrices.
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(b) (5 pts) Use your work in part (a) and the determinant formula given above to prove that that the
determinant of an upper triangular matrix U 2 R3⇥3 is the product of the main diagonal elements.

Solution: Using the information above, for matrix A 2 R3⇥3 we have

det(A) =
X

⇡2Sn

sgn(⇡) · a1⇡(1) · a2⇡(2) · a3⇡(3)

=
6X

i=1

sgn(⇡
i

) · a1⇡i(1) · a2⇡i(2) · a3⇡(3)

= a11 · a22 · a33 + a12 · a23 · a31 + a13 · a21 · a32
� a13 · a22 · a31 � a11 · a23 · a32 � a12 · a21 · a33

If we assume that A is upper-triangular, we know

A =

2

4
a11 a12 a13

0 a22 a23

0 0 a33

3

5 () a

ik

⇢
2 R if i  k

= 0 if i > k

Thus, since all permutations ⇡2,⇡3, ...,⇡6 contain at least one inversion, we see that the determinant
function greatly simplifies to

det(A) = a11 · a22 · a33

which is just the product of the diagonal elements. This is exactly what we wanted to show.

Math 2B: Sample Exam 2, V1A c� Je↵rey A. Anderson Page 13 of 14


