M2B: SAMPLE EXAM 1, V2A © Jeffrey A. Anderson ANSWER KEY

True / False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you've chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. @ F Let A € R™*™. If we define the function f(x) = Ax, then the codomain of this
function is R™

n T
2. T @ Let A € R™*™ and x € R"™. Then Ax = kzzjl Tk (A(k‘, ))

3. T @ A linear combination of vectors is the same thing as the span of these vectors.

T
4. @ F We know <532(—5)) = I, — 5eyel where S;i(c) is a 4 x 4 shear matrix.

5. T @ For vectors x,y € R™, we know |x-y| > ||x]|2 [|¥]|2



Multlple Choice (60 points: 4 points each) For the problems below, circle the correct response
for each question. After you've chosen your answer, mark your answer on your Scantron form.

Consider the following directed graph. Use this graph to find the correct answer for problem 6.

Incidence Matrix
€1 €2 €3 €4 €5 €Eg

6. Let A represent the 4 x 6 incidence matrix. Find A(:,2) - A(:, 5):

A 2 B. 1 C. 0 D. -1 E. -2

7. Let the following 5 x 7 matrix be the incidence matrix for a directed graph:

This matrix corresponds to which of the following directed graphs:
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8. Let matrix P € R**® be given as follows:

0 01 0O
P11 P12 P13 P14 Pis 0 1 0 0f |ain a12 a13 as ass 000 0 1
P21 P22 P23 paa Pas| _ |1 0 0 Of jaor ax a3 ax as 0100 0
D31 P32 P33 D34 P35 0 0 0 1f |az1 a3z a3z ass ass 000 10
D41 P42 Pa3  Paa P45 0 0 1 0f |[as1 aq2 @43 aasa ags 100 0 0
Using this definition, we see that a5 is equal to which of the following:
A. a2 =pan B. a12 = pa C. a12 = pa2 D. a1z =p12 E. a2 =pas
9. Which of the following sets is equivalent to
1 0
Span< [0f, |1
0 0
T 1 X
A. R? B. R? C. xo| rx; R fori=1,2 D. 1 E. z| :x€eR
0 0 0
10. Let E C R x R be given by
72 y?
E = . —_— 1
{(x’y) 1024 729 © }
Which of the following cannot be true about the relation E?
A. Dom(E) = [-32,32] B. Dom(E) = (—32,32) C. Rng(FE) = (—27,27)

D. E is not a function E. Codomain(E) =R
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For problems 11 and 12, consider the polygons V and W .:

BEGIN POLYGON V END POLYGON W
5 A
s R S
v V2
o9 ISUINS SRRNNNS SO S SR N
; 0 iwal iws
- e peeseeaes e e -3
2 o—oVi i w2 S S R 2
v3
o @ ® — S S 1
V6 Vs : W1 : i ' W6
0 i 2 3 4 -5 -4 -3 -2 -1 0

11. Which of the following vertex matrices V' encodes the begin polygon above? For this model, assume
that the kth column of V' encodes vertex Vk, for k € {1,2,3,4,5,6}:

112 2 3 3 122 3 31 442211
A{141122 J B'L4 221J C‘Lz 2 3 3 1
1442 2 1 4 4 -2 -2 -1 -1
D[112 233] E{1 2 2 3 3 J

12. As noted above, let V' be the vertex matrix that models the begin polygon and W be the vertex matrix
that models the end polygon. Which matrix @ below satisfies equation

W=QV

O S I I IO H | I

13. For sets A and B, the statement “If x € A, then x € B” is written using which of the following?

A.ALB B.BCA C. A=1B D. ACB E. A#B
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14. Consider the following data set that describes the average rent levels for a rental unit with 2 bedrooms
and 1 bathroom (2Bd/1Ba) in Union City, CA.

Index | Year | Average Rent
i t; | Level R (in $)
1 2005 $1,197
2 2006 $1,252
3 2007 $1,353
4 2008 $1,413
5 2009 $1,275
6 2010 $1,277
7 2011 $1,392
8 2012 $1,490
9 2013 $1,663

Average 2 BD, 1BA Rent in Union City:
Average Increase: $42.00 per year between 2005 — 2013

1800
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1500}

1400}

1300}
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1100}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

From this data, we can model the rent for a 2Bd/1Ba unit using a linear function in the form

where R; is the modeled monthly rent during year ¢;. Choose the correct matrix-vector model for gen-
erating vector R € R? given any choice of b, m € R.

Ry 1 2005 Ri 2005 1197 Ri 1 1197 Ry 1 2005
Ro 1 2006 Ry 2006 1252 Ry 1 1252 Ry 2 2006
R 1 2007 R 2007 1353 R 1 1353 R 3 2007
Ry 1 2008 Ry 2008 1413 Ry 11413 o Ry 4 2008 r,
A. |Rs| = |1 2009 {m] B. |Rs 2009 1275 [m} C. |Rs 1 1275 [m} D. |Rs| = |5 2000 [m}
Re 1 2010 ' Re 2010 1277 Re 11277 Re 6 2010 '
Rr 1 2011 Ry 2011 1392 Rr 1 1392 Ry 7 2011
Rsg 1 2012 Rsg 2012 1490 Rs 1 1490 Rsg 8 2012
Ry 1 2013 Ry 2013 1663 Ro 1 1663 Ry 9 2013
15. Consider the following two column vectors
1
-1
X = s y = 1
1
Find the angle 6 between these vectors:
1 2 s 5m
A —— B. 7« C. — D. - E. —
2 3 3 6
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For Problems 16 - 17, consider the following spring-mass system

Spring Mass Chain at equilibrium Spring Mass Chain at equilibrium with

NO external force (0 sec) force due to earth’s gravity (at 7" sec)
///////////////////////////////////////////////////////////////////
////////////// Qf@ ID]E////////////// //////////////Gelpll%//////////////
////////////////////////////////////////////////////////////////////

k1 = 300—
k1
= x1(0)
Z] m
Cé 1
=
z1(T)
ma
N
ko = 200—
m
i P 2(0)
2| 4 2
Z mo
=
=
z2(T)
N
ks = 200— m
m
& 3(0)
Z ms k3
=
=1
z3(T)
N
ks = 300— my
m
z+
x
k4+
///////////// T, T s I
///////////// Y A A S o s e

16. Consider the mass-spring chain from the diagram above. Recall the model for the mass spring chain is
given by Mi(t) + Ku(t) = F.(t). Identify the stiffness matrix K for the given values of k;?

500 —200 0 300 —200 0 500 —200 -—-200
A. |-200 400 —200 B. |—-200 200 —200 C. |—200 400 -—-200
0 —200 500 0 —200 300 —200 —-200 500

—500 200 0 300 0 0

D. 200 —400 200 E. 0 200 0

0 200 —500 0 0 300

17. Suppose that you are given the displacement vector when ¢ = T at equilibrium to find

w1 (T) 0.98
u= |ux(T)| = |1.96
us(TY| 1098

measured in meters. Then, which of the following gives the mass vector m = [ml ma mg]T as mea-
sured in kg? Assume the acceleration due to earth’s gravity is g = 9.8m/s2. Also assume that the mass
of each spring is zero and that these springs satisfy Hooke’s law exactly.

10 9.8 1 0.1 294
A. (40 B. [39.2 C. |4 D. |04 E. 139.2
10 9.8 1 0.1 294
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18. Define matrix A by

2 3 1 4 6

1 -2 3 2 0
A=|—-4 1 0 5 7
6 —2 8 0 -1

-7 -2 -1 3 1

For which of the following matrices E below will the matrix product
EA=C

not have a zero in the first column?

A. S1(—0.5) B. S31(2) C. Su1(—3) D. S51(3.5) E. Su(3)

19. Which of the following sets of vectors is linearly dependent?
1 0 0 1 0 0 1 1 0
0 1 0 4 —2 0 1 -1 0
A. 0l’10f’ 0 B. o/’ of”|1 C. o|’{o|"|1
0 0 1 0 0 1 0 0 1
1 3 0 1 1 1
1 3 0 0 1 1
D. 0 —4 1 E. 0]’f0]’ 11
0 —4 1 0 0 0
20. Recall that we used a spring in class modeled by the equation f(e) = ke + b where k = 17.57 N/m and

b = 0.064N. Which of the following gives an ideal version of vector e (where entries are measured in m)
if we hang masses encoded in the mass vector

0.00
0.10
m= |0.20
0.30
0.40

In this case, assume elongation measurements are given in meters (m) and are rounded to 4 digits to the
right of the decimal place. Each entry of m is measured in units of kilograms (kg). Remember the unit

equation 1 N = 1kgs-2 m. Also, sssume the acceleration due to gravity is 9.8 m/s?.
0.064 —0.0036 —0.0036 0.00 0.064
1.821 0.0521 0.0020 0.98 17.2826
A. |3.578 B. 0.1079 C. 0.0077 D. [1.96 E. [34.5012
5.335 0.1637 0.0134 2.94 51.7198
7.092 0.2195 0.0191 3.92 68.9384
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Free Response

21. (10 pts) Let A € R™*™. Suppose that x1,x2 € R™ and c¢j,co € R. The superposition principle of
matrix-vector multiplication is given by

A(c1x1 + CQXQ) = Clel + CQAXQ

Prove this theorem.

Solution: Option 1: Column-Partition Version- Let A € R™*". Suppose that x1,xs € R"”
and c1,cy € R. Define vector y € R™ as the linear combination

Y = c1X1 + c2Xa
Then, the kth entry of y is given by
Yk =C1 - Tp1 + C2 - Tk2

for kK =1,2,...,n. In this case, we have that the scalar xj; € R is the kth entry of the column vector
x; for i = 1,2. Now, let’s consider the column-partition version of the matrix vector product

3

c1 w1 AL Kk) 4+ co - ar2 AG K)

e
Il
—

3

=> c-Trp Al ) + i (Cz Tpo A(: ))

k=1 k=1

1 (i Tr1 A(%k‘)) ) <i Ti2 A(%k))
=1 k=1

= Clel + CQAXQ

This is exactly what we wanted to show.
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Solution: Option 1: Scalar Version (Using inner products)- Let A € R™*™. Suppose that

X1,X2 € R™ and c¢1, co € R. Define two vectors y, b € R™ as follows

y = A(e1x1 + cax2), b = c1Ax; + ey Axo

In this problem, we are asked to show that y = b. We will do this by confirming this equality
entry by entry. In particular, we recall that two vectors are equal if and only if they have the same
dimensions and their individual coefficients are equal. Letting y;,b; € R be the ith entry of vectors

y and b respectively, we confirm that
yi = b;

foralli=1,2,...n.

We begin by considering
Yi = A(Z, :) . (clxl + CQXQ)
C1%11 + C2%12
C1T21 + C2T22
= [ail Q2 - am] :
C1Zp1 + C2Tn2
n

= Zaij : (C1$j1 + szjz)

Jj=1

n
= Z C1 (aijle) + C2 (aij.’bjg)
j=1

n n
=1 Z (aijrj1) + c2 Z (aijzj2)
j=1 Jj=1

=1 A(Z,)x1 + 2 A(%,:)x2

Because this holds true for all i = 1, 2, ...,n, we have proved our desired relation.
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22. (10 pts) Consider the mass-spring system below:

Spring Mass Chain at equilibrium Spring Mass Chain at equilibrium with

NO external force (0 sec) force due to earth’s gravity (at 1" sec)

//////////////////@ 212 LLIIIIIIIIIII 7777777 ‘/////////// //////Oé //////////////////
/7777777777777 7777 i V1177777777777 7777 ZIIIIII I 7 7777 1 ///////////////////

kq
k1

Mass 1

x9(0
koo ks 2(0)

Mass 2

z2(T)

k4 ma

k
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A. Generate vector models (using appropriate matrices and vectors) to define each of the following;:
u? e’ FS? y7

where these vectors represent the displacement vector, elongation vector, spring-force vector and
net internal force vector respectively (as discussed in class).

Solution: Let’s set up our model of the 2-mass, 4-spring chain.

POSITION VECTORS:

Let’s define xo to be the initial position vector. Also, we will let x(¢) store the positions
of each mass at any time ¢. In this case, we let

o-[z8] - [

where z;(0) represents the position of mass i at time ¢ = 0 as shown in the diagram. Further,
z;(t) represents the position of mass i at time t € (0,7] C R.

DISPLACEMENT VECTOR:

With this we can set up our displacement vector u(¢). In this case, we have assumed the zero
position of our ruler to be on the ground. Moreover, we orient positive position measurements
in the upward direction (toward the ceiling). We want u,(t) to measure the displacement of
mass ¢ away from it’s initial position. Since x;(0) > x;(¢) in our diagram, we see that u;(¢) > 0
if and only if ;(0) — z;(¢) > 0. Thus, we define our displacement vector

aty = 18] <0 = [0 =]

Remark (for students who want to earn above a 90%):
In this case, we choose the initial minus final so that positive displacement occurs in the
downward position. If we wanted, we could re-orient our model using either of the options:

A. Set u(t) = x(t) — x¢ and realize that in this case positive displacement occurs when the
masses move upward from their initial position.

B. Force the zero position of our ruler to be on the ceiling of our model. Thus, we measure
positive position in the downward position. In this case, we could force u(t) = x(t) — xq
and ensure that positive displacement occurs in the downward position.

In any case, as mathematicians modeling this system we must state our assumptions CLEARLY
and make sure to account for our hypothesis correctly throughout our analysis.
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Solution:
ELONGATION VECTOR:

From this vector, we can define the elongation vector

€1 (t) Ul(t) 1 0

e— €9 (t) _ U2 (t) — Uy (t) _ -1 1 |:’U,1(t):|
es(t) uz(t) — uq(t) -1 1| |ua(t)
e4(t) —us(t) 0 -1

where e;(t) represents the elongation of spring ¢ at time ¢ for ¢ € {1,2,3,4}. As discussed in
class, we can write e as a matrix vector product

1 0
-1 1
e(t) = Au(t) where A = 1 1 (1)
0 -1
FORCE VECTORS FOR SPRINGS:
Now, let’s move onto finding the internal forces stored in each spring. To this end, let
Fsl (t) kl el(t) kl 0 0 0 el(t)
F (t) _ F82 (t> _ ko 62(t> _ 0 ko 0 0 eg(t)
3 Fy, (t) k3 es(t) 0 0 k3 Of |es(t)
F94 (t) k4 €4 (t) 0 0 0 :ZC4 €4 (t)
Again, we can interpret our vector F(t) using matrix-vector multiplication as
kk 0 0 O
B 10 ke 0 O
Fi(t) = Ce(t) where C' = 0 0 ks O (2)
0 0 0 ky
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NET INTERNAL FORCES FOR MASS-SPRING CHAIN:

Let’s consider the net internal forces on each mass. To do so, we draw a free-body diagram
and focus only on the forces that result from the coupling of the masses and springs.

IFSl FSQ I FSB T

Mass 1
Mass 2

FSQlFSSlFSIl FS4l Fegl

We now introduce the vector y(t) to store the net force on each mass. When writing the
individual entries of y(¢) we will assume that positive forces result in positive displacements.
Since we’ve oriented positive displacement in the downward direction, we also orient positive
force in the downward direction.

(@) _[F®)+Fs,)—Fs, ) ] _ 1 -1 -1 0
vl = [yz(t)] a {—FSZ(t) — Fi,(t) +FS4(t)} - {0 11 -1

w

| ;:1;1 o
Py
=

N N N N

We transform this into a matrix-vector product

y(t) = —ATF,(t) (3)

where A was defined in equation (1) for our model of the elongation vector e. Notice that we’ve
factored out a negative sign in order to make this statement.

Remark (for students who want to earn above a 80%):

— It is important that we have not consider the external force Fp,(t) on mass ¢ when con-
structing the vector y(¢). We will account for these forces later when considering the
vector version of Newton’s second law.

— For now, we focus on the internal forces of the system. This enables us to create a
description of the mass-spring chain that is independent from the driving forces Ft,(t).
As we will see, this is particularly useful when we analyze how the system responds to
different external forces based on the internal structure.
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B. Using your vector models from above, describe y as a matrix-vector product with stiffness matrix
K and vector u. Demonstrate how to calculate K and explicitly calculate it’s value in general.

Solution: In this problem, we will using equations (1), (2), and (3) to create stiffness matrix
K. To this end, note

y(t)=—ATF,(t) by equation (3)
= —ATCe(t) by equation (2)
= —ATCAu(t) by equation (1)
= —Kul(t)

If we let K = ATCA, we can then write

y(t) = —Ku(t) (4)

We can form our stiffness matrix K explicitly using matrix-matrix multiplication with

k0 0 0][1 o0
ko[l -1 -1 0110 ke 0 0f |-1 1 _[kitkethks ks kg
0 1 1 —-1|]0 0 ks o0f]-1 1 —ky— ks ko + ks + ka

0 0 0 ke | 0 —1
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C. Show how to use Newton’s second law leads to an equation of the form
Ku=F,

where F, represents the vector of external forces on each mass.

Solution: From Newton’s second law, we know that
Net Force = Mass x Acceleration

We can apply this law to each mass individually to create a differential equation that describes

our system, given by
SF = FR} _ [ml ﬁl(t)} _ [m1 O} {ﬂl(t)}

ZFQ meo dg (t) 0 mo ﬂg (t)
d2
where X F; represents the net force on mass ¢ and ;(t) = p7el {uz(t)} for i € {1,2}. We write
the matrix-vector multiplication
o . | 0
YF = Mu(t) where M = [ 0 mJ (5)

Further, since all forces are assumed to be positive in the downward direction we see
SR _ [Fa®)] , [n1()
SF| o |[Fe,(t)] - [2(t)

SF =F.(t) +y(t) (6)

Thus, we can write

By combing equations (4), (5), and (6), we see
Miu(t) = Fe(t) +y(?)

— Mii(t) = F(t) + —Ku(t)

By moving —K onto the other side of the equation, we have
Mu(t) + Ku(t) = F.(t) (7)

Since we have assume that we study the system at equilibrium for ¢t = T, we know u(7) = 0
and we have

Ku(T)=F.(T)
Remark (for students who want to earn above a 100%):

— In this derivation, we’ve used a very general approach to allow ¢ € (0,7]. Only at the
very end of our work, did we substitute the value of t = T to represent the case that our
masses have settled down to equilibrium. As we will see, this general approach will come
in very useful during our discussion of the eigenvalue-eigenvector problem.

— In fact, we have derived a coupled ordinary differential equation in the work above. For
those of you that have taken (or will take) Math 2A at Foothill, you may notice that
equation (7) is a vector version of the 2nd order differential equation for a harmonic
oscillator with no damping and general forcing function.
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23. (10 pts) Let’s consider the space of 4 x 4 matrices. Let S;x(c) € R*** be a shear matrix, as defined in
class. Then, find vector 7 € R* such that

Sar(—4) - S31(2) - Sa1(=5) = Iy — Te]

Show your work. Explain how you found vector 7 and demonstrate your mastery of the matrix-matrix
multiplication and outer product operations.

Solution: Option 1: Matrix-Matrix Multiplication Version- Let’s recall the outer-product
definition of shear matrices
Sik(c) =1, +ce;e}
We are told n = 4 in the problem statement. Using our outer product definition, we see
10 0 0 1 0 0 0 1 0 0 0
01 00 01 00 -5 1 0 0
Sul=H=1 79 ¢ 1 of “@=|y 0 1 o0 =190 1 0
-4 0 0 1 0 0 0 1 0 0 0 1
We can use any version of our definition for matrix multiplication to find
[ 1 0 0 O] 10 00 1 0 0 0
01 00 01 00 -5 1 0 0
Su(=4) 551 (2)-521(=5) =1 5 g 1 gl |2 010/ |00 10
-4 0 0 1] [0 0 O 1 0 0 01
1 0 0 0]
/-5 1 0 0
12 010
-4 0 0 1]
Then, we also notice
10 0 0 [1 0 0 0] [0 0 00
-5 1 0 0f_|{0 1 0O | 5000
2 0 1 0f (0010 -2 0 0 0
-4 0 0 1 0 0 0 1} | 4 0 0 0
[1 0 0 O] [0
01 0 0 5
=lo 0 1 of |l 000
0 0 0 1j | 4
Thus, we see that our desired 7 as described in our problem statement is given by
0
| 5
T2
4
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