
M2B: SAMPLE EXAM 1, V2A c� Je↵rey A. Anderson ANSWER KEY

True/False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you’ve chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T F Let A 2 Rm⇥n. If we define the function f(x) = Ax, then the codomain of this
function is Rm

2. T F Let A 2 Rm⇥n and x 2 Rn. Then Ax =
nP

k=1
xk

⇣
A(k, :)

⌘T

3. T F A linear combination of vectors is the same thing as the span of these vectors.

4. T F We know
⇣
S32(�5)

⌘T
= I4 � 5 e2 eT3 , where Sik(c) is a 4⇥ 4 shear matrix.

5. T F For vectors x,y 2 Rn
, we know |x · y| � kxk2 kyk2



Multiple Choice (60 points: 4 points each) For the problems below, circle the correct response
for each question. After you’ve chosen your answer, mark your answer on your Scantron form.

Consider the following directed graph. Use this graph to find the correct answer for problem 6.

N1

N2

N3 N4

e1

e4

e5 e6

e2

e3

Incidence Matrix

e1 e2 e3 e4 e5 e6
N1

N2

N3

N4

6. Let A represent the 4⇥ 6 incidence matrix. Find A(:, 2) ·A(:, 5):

A. 2 B. 1 C. 0 D. -1 E. -2

7. Let the following 5⇥ 7 matrix be the incidence matrix for a directed graph:

A =

2

66664

0 �1 1 0 0 0 0
�1 1 0 0 1 0 �1
1 0 0 �1 0 0 0
0 0 0 1 �1 �1 0
0 0 �1 0 0 1 1

3

77775

This matrix corresponds to which of the following directed graphs:

A.

1

2

3

5

4

e3e2

e5
e1

e4

e6

e7

B.

1

2

3

5

4

e3e2

e5
e1

e4

e6

e7

C.

1

2

3

5

4

e3e2

e5
e1

e4

e6

e7

. D.

1

2

3

5

4

e3e2

e5
e1

e4

e6

e7

E.

1

2

3

5

4

e3e2

e5
e1

e4

e6

e7
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8. Let matrix P 2 R4⇥5 be given as follows:

2

664

p11 p12 p13 p14 p15

p21 p22 p23 p24 p25

p31 p32 p33 p34 p35

p41 p42 p43 p44 p45

3

775 =

2

664

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

3

775

2

664

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

3

775

2

66664

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

3

77775

Using this definition, we see that a12 is equal to which of the following:

A. a12 = p21 B. a12 = p24 C. a12 = p42 D. a12 = p12 E. a12 = p25

9. Which of the following sets is equivalent to

Span

8
<

:

2

4
1
0
0

3

5
,

2

4
0
1
0

3

5

9
=

;

A. R2 B. R3 C.

8
<

:

2

4
x1

x2

0

3

5 : xi 2 R for i = 1, 2

9
=

; D.

8
<

:

2

4
1
1
0

3

5

9
=

; E.

8
<

:

2

4
x

x

0

3

5 : x 2 R

9
=

;

10. Let E ✓ R⇥ R be given by

E =

⇢
(x, y) :

x

2

1024
+

y

2

729
< 1

�

Which of the following cannot be true about the relation E?

A. Dom(E) = [�32, 32] B. Dom(E) = (�32, 32) C. Rng(E) = (�27, 27)

. D. E is not a function E. Codomain(E) = R
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For problems 11 and 12, consider the polygons V and W .:

BEGIN POLYGON V END POLYGON W

11. Which of the following vertex matrices V encodes the begin polygon above? For this model, assume
that the kth column of V encodes vertex Vk, for k 2 {1, 2, 3, 4, 5, 6}:

A.


1 1 2 2 3 3
1 4 4 2 2 1

�
B.


1 2 2 3 3 1
4 4 2 2 1 1

�
C.


4 4 2 2 1 1
1 2 2 3 3 1

�

. D.


1 4 4 2 2 1
1 1 2 2 3 3

�
E.


�4 �4 �2 �2 �1 �1
1 2 2 3 3 1

�

12. As noted above, let V be the vertex matrix that models the begin polygon and W be the vertex matrix
that models the end polygon. Which matrix Q below satisfies equation

W = QV

A.


1 0
0 �1

�
B.


�1 0
0 �1

�
C.


0 1

�1 0

�
D.


0 �1

�1 0

�
E.


0 �1
1 0

�

13. For sets A and B, the statement “If x 2 A, then x 2 B” is written using which of the following?

A. A  B B. B ✓ A C. A = B D. A ✓ B E. A 6= B
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14. Consider the following data set that describes the average rent levels for a rental unit with 2 bedrooms
and 1 bathroom (2Bd/1Ba) in Union City, CA.

Index Year Average Rent
i ti Level R (in $)
1 2005 $1, 197
2 2006 $1, 252
3 2007 $1, 353
4 2008 $1, 413
5 2009 $1, 275
6 2010 $1, 277
7 2011 $1, 392
8 2012 $1, 490
9 2013 $1, 663

From this data, we can model the rent for a 2Bd/1Ba unit using a linear function in the form

Ri = R(ti) = b+m · ti

where Ri is the modeled monthly rent during year ti. Choose the correct matrix-vector model for gen-
erating vector R 2 R9 given any choice of b,m 2 R.

A.

2

66666666664

R1

R2

R3

R4

R5

R6

R7

R8

R9

3

77777777775

=

2

66666666664

1 2005
1 2006
1 2007
1 2008
1 2009
1 2010
1 2011
1 2012
1 2013

3

77777777775


b
m

�
B.

2

66666666664

R1

R2

R3

R4

R5

R6

R7

R8

R9

3

77777777775

=

2

66666666664

2005 1197
2006 1252
2007 1353
2008 1413
2009 1275
2010 1277
2011 1392
2012 1490
2013 1663

3

77777777775


b
m

�
C.

2

66666666664

R1

R2

R3

R4

R5

R6

R7

R8

R9

3

77777777775

=

2

66666666664

1 1197
1 1252
1 1353
1 1413
1 1275
1 1277
1 1392
1 1490
1 1663

3

77777777775


b
m

�
D.

2

66666666664

R1

R2

R3

R4

R5

R6

R7

R8

R9

3

77777777775

=

2

66666666664

1 2005
2 2006
3 2007
4 2008
5 2000
6 2010
7 2011
8 2012
9 2013

3

77777777775


b
m

�

15. Consider the following two column vectors

x =

2

664

�1
1
1

�1

3

775 , y =

2

664

1
�1
1
1

3

775

Find the angle ✓ between these vectors:

A. �1

2
B. ⇡ C.

2⇡

3
D.

⇡

3
E.

5⇡

6
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For Problems 16 - 17, consider the following spring-mass system

m1

M
as
s
1

m2
M
as
s
2

m3

M
as
s
3

Ground

Ceiling

x

+

k1 = 300
N

m

k2 = 200
N

m

k3 = 200
N

m

k4 = 300
N

m

Spring Mass Chain at equilibrium

NO external force (0 sec)

x1(0)

x2(0)

x3(0)

m1

m2

m3

Ground

Ceiling

k1

k2

k3

k4

Spring Mass Chain at equilibrium with

force due to earth’s gravity (at T sec)

x1(T )

x2(T )

x3(T )

16. Consider the mass-spring chain from the diagram above. Recall the model for the mass spring chain is
given by M ü(t) +Ku(t) = Fe(t). Identify the sti↵ness matrix K for the given values of ki?

A.

2

4
500 �200 0

�200 400 �200
0 �200 500

3

5 B.

2

4
300 �200 0

�200 200 �200
0 �200 300

3

5 C.

2

4
500 �200 �200

�200 400 �200
�200 �200 500

3

5

. D.

2

4
�500 200 0
200 �400 200

0 200 �500

3

5 E.

2

4
300 0 0
0 200 0
0 0 300

3

5

17. Suppose that you are given the displacement vector when t = T at equilibrium to find

u =

2

4
u1(T )
u2(T )
u3(T )

3

5 =

2

4
0.98
1.96
0.98

3

5

measured in meters. Then, which of the following gives the mass vector m =
⇥
m1 m2 m3

⇤T
as mea-

sured in kg? Assume the acceleration due to earth’s gravity is g = 9.8m/s

2. Also assume that the mass
of each spring is zero and that these springs satisfy Hooke’s law exactly.

A.

2

4
10
40
10

3

5 B.

2

4
9.8
39.2
9.8

3

5 C.

2

4
1
4
1

3

5 D.

2

4
0.1
0.4
0.1

3

5 E.

2

4
29.4
39.2
29.4

3

5
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18. Define matrix A by

A =

2

66664

2 3 1 4 6
1 �2 3 2 0

�4 1 0 5 7
6 �2 8 0 �1

�7 �2 �1 3 1

3

77775

For which of the following matrices E below will the matrix product

EA = C

not have a zero in the first column?

A. S21(�0.5) B. S31(2) C. S41(�3) D. S51(3.5) E. S41(3)

19. Which of the following sets of vectors is linearly dependent?

A.

8
>><

>>:

2

664

1
0
0
0

3

775 ,

2

664

0
1
0
0

3

775 ,

2

664

0
0
0
1

3

775

9
>>=

>>;
B.

8
>><

>>:

2

664

1
4
0
0

3

775 ,

2

664

0
�2
0
0

3

775 ,

2

664

0
0
1
1

3

775

9
>>=

>>;
C.

8
>><

>>:

2

664

1
1
0
0

3

775 ,

2

664

1
�1
0
0

3

775 ,

2

664

0
0
1
1

3

775

9
>>=

>>;

. D.

8
>><

>>:

2

664

1
1
0
0

3

775 ,

2

664

3
3

�4
�4

3

775 ,

2

664

0
0
1
1

3

775

9
>>=

>>;
E.

8
>><

>>:

2

664

1
0
0
0

3

775 ,

2

664

1
1
0
0

3

775 ,

2

664

1
1
1
0

3

775

9
>>=

>>;

20. Recall that we used a spring in class modeled by the equation f(e) = ke+ b where k = 17.57 N/m and
b = 0.064N. Which of the following gives an ideal version of vector e (where entries are measured in m)
if we hang masses encoded in the mass vector

m =

2

66664

0.00
0.10
0.20
0.30
0.40

3

77775

In this case, assume elongation measurements are given in meters (m) and are rounded to 4 digits to the
right of the decimal place. Each entry of m is measured in units of kilograms (kg). Remember the unit

equation 1 N = 1
kg · m

s2
. Also, sssume the acceleration due to gravity is 9.8 m/s2.

A.

2

66664

0.064
1.821
3.578
5.335
7.092

3

77775
B.

2

66664

�0.0036
0.0521
0.1079
0.1637
0.2195

3

77775
C.

2

66664

�0.0036
0.0020
0.0077
0.0134
0.0191

3

77775
D.

2

66664

0.00
0.98
1.96
2.94
3.92

3

77775
E.

2

66664

0.064
17.2826
34.5012
51.7198
68.9384

3

77775
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Free Response

21. (10 pts) Let A 2 Rm⇥n. Suppose that x1,x2 2 Rn and c1, c2 2 R. The superposition principle of
matrix-vector multiplication is given by

A(c1x1 + c2x2) = c1Ax1 + c2Ax2

Prove this theorem.

Solution: Option 1: Column-Partition Version- Let A 2 Rm⇥n. Suppose that x1,x2 2 Rn

and c1, c2 2 R. Define vector y 2 Rn as the linear combination

y = c1x1 + c2x2

Then, the kth entry of y is given by

yk = c1 · xk1 + c2 · xk2

for k = 1, 2, ..., n. In this case, we have that the scalar xki 2 R is the kth entry of the column vector
xi for i = 1, 2. Now, let’s consider the column-partition version of the matrix vector product

Ay =
nX

k=1

yk A(:, k)

=
nX

k=1

(c1 · xk1 + c2 · xk2) A(:, k)

=
nX

k=1

c1 · xk1 A(:, k) + c2 · xk2 A(:, k)

=
nX

k=1

c1 · xk1 A(:, k)
⌘
+

nX

k=1

⇣
c2 · xk2 A(:, k)

⌘

= c1

 
nX

k=1

xk1 A(:, k)

!
+ c2

 
nX

k=1

xk2 A(:, k)

!

= c1Ax1 + c2Ax2

This is exactly what we wanted to show.
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Solution: Option 1: Scalar Version (Using inner products)- Let A 2 Rm⇥n. Suppose that
x1,x2 2 Rn and c1, c2 2 R. Define two vectors y,b 2 Rn as follows

y = A (c1x1 + c2x2) , b = c1Ax1 + c2Ax2

In this problem, we are asked to show that y = b. We will do this by confirming this equality
entry by entry. In particular, we recall that two vectors are equal if and only if they have the same
dimensions and their individual coe�cients are equal. Letting yi, bi 2 R be the ith entry of vectors
y and b respectively, we confirm that

yi = bi

for all i = 1, 2, ...n.

We begin by considering

yi = A(i, :) · (c1x1 + c2x2)

=
⇥
ai1 ai2 · · · ain

⇤
·

2

6664

c1x11 + c2x12

c1x21 + c2x22
...

c1xn1 + c2xn2

3

7775

=
nX

j=1

aij · (c1xj1 + c2xj2)

=
nX

j=1

c1 (aijxj1) + c2 (aijxj2)

= c1

nX

j=1

(aijxj1) + c2

nX

j=1

(aijxj2)

= c1A(i, :)x1 + c2A(i, :)x2

= bi

Because this holds true for all i = 1, 2, ..., n, we have proved our desired relation.
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22. (10 pts) Consider the mass-spring system below:

m1

M
as
s
1

m2

M
as
s
2

Ground

Ceiling

k1

k2 k3

k4

Spring Mass Chain at equilibrium

NO external force (0 sec)

x1(0)

x2(0)

m1

m2

Ground

Ceiling

k1

k2 k3

k4

Spring Mass Chain at equilibrium with

force due to earth’s gravity (at T sec)

x1(T )

x2(T )
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A. Generate vector models (using appropriate matrices and vectors) to define each of the following:

u, e,Fs,y,

where these vectors represent the displacement vector, elongation vector, spring-force vector and
net internal force vector respectively (as discussed in class).

Solution: Let’s set up our model of the 2-mass, 4-spring chain.

POSITION VECTORS:

Let’s define x0 to be the initial position vector. Also, we will let x(t) store the positions
of each mass at any time t. In this case, we let

x0 =


x1(0)
x2(0)

�
, x(t) =


x1(t)
x2(t)

�

where xi(0) represents the position of mass i at time t = 0 as shown in the diagram. Further,
xi(t) represents the position of mass i at time t 2 (0, T ] ✓ R.

DISPLACEMENT VECTOR:

With this we can set up our displacement vector u(t). In this case, we have assumed the zero
position of our ruler to be on the ground. Moreover, we orient positive position measurements
in the upward direction (toward the ceiling). We want ui(t) to measure the displacement of
mass i away from it’s initial position. Since xi(0) > xi(t) in our diagram, we see that ui(t) > 0
if and only if xi(0)� xi(t) > 0. Thus, we define our displacement vector

u(t) =


u1(t)
u2(t)

�
= x0 � x(t) =


x1(0)� x1(t)
x2(0)� x2(t)

�

Remark (for students who want to earn above a 90%):
In this case, we choose the initial minus final so that positive displacement occurs in the
downward position. If we wanted, we could re-orient our model using either of the options:

A. Set u(t) = x(t)� x0 and realize that in this case positive displacement occurs when the
masses move upward from their initial position.

B. Force the zero position of our ruler to be on the ceiling of our model. Thus, we measure
positive position in the downward position. In this case, we could force u(t) = x(t)� x0

and ensure that positive displacement occurs in the downward position.

In any case, as mathematicians modeling this system we must state our assumptions CLEARLY
and make sure to account for our hypothesis correctly throughout our analysis.
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Solution:

ELONGATION VECTOR:

From this vector, we can define the elongation vector

e =

2

664

e1(t)
e2(t)
e3(t)
e4(t)

3

775 =

2

664

u1(t)
u2(t)� u1(t)
u2(t)� u1(t)

�u3(t)

3

775 =

2

664

1 0
�1 1
�1 1
0 �1

3

775


u1(t)
u2(t)

�

where ei(t) represents the elongation of spring i at time t for i 2 {1, 2, 3, 4}. As discussed in
class, we can write e as a matrix vector product

e(t) = Au(t) where A =

2

664

1 0
�1 1
�1 1
0 �1

3

775 (1)

FORCE VECTORS FOR SPRINGS:

Now, let’s move onto finding the internal forces stored in each spring. To this end, let

Fs(t) =

2

664

Fs1(t)
Fs2(t)
Fs3(t)
Fs4(t)

3

775 =

2

664

k1 e1(t)
k2 e2(t)
k3 e3(t)
k4 e4(t)

3

775 =

2

664

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3

775

2

664

e1(t)
e2(t)
e3(t)
e4(t)

3

775

Again, we can interpret our vector Fs(t) using matrix-vector multiplication as

Fs(t) = Ce(t) where C =

2

664

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3

775 (2)
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NET INTERNAL FORCES FOR MASS-SPRING CHAIN:

Let’s consider the net internal forces on each mass. To do so, we draw a free-body diagram
and focus only on the forces that result from the coupling of the masses and springs.

m1
M
as
s
1

Fs1

Fs2 Fs3 Fe1

m2

M
as
s
2

Fs2 Fs3

Fs4 Fe2

We now introduce the vector y(t) to store the net force on each mass. When writing the
individual entries of y(t) we will assume that positive forces result in positive displacements.
Since we’ve oriented positive displacement in the downward direction, we also orient positive
force in the downward direction.

y(t) =


y1(t)
y2(t)

�
=


Fs2(t) + Fs3(t)� Fs1(t)
�Fs2(t)� Fs3(t) + Fs4(t)

�
= �


1 �1 �1 0
0 1 1 �1

�
2

664

Fs1(t)
Fs2(t)
Fs3(t)
Fs4(t)

3

775

We transform this into a matrix-vector product

y(t) = �A

TFs(t) (3)

where A was defined in equation (1) for our model of the elongation vector e. Notice that we’ve
factored out a negative sign in order to make this statement.

Remark (for students who want to earn above a 80%):

– It is important that we have not consider the external force Fei(t) on mass i when con-
structing the vector y(t). We will account for these forces later when considering the
vector version of Newton’s second law.

– For now, we focus on the internal forces of the system. This enables us to create a
description of the mass-spring chain that is independent from the driving forces Fei(t).
As we will see, this is particularly useful when we analyze how the system responds to
di↵erent external forces based on the internal structure.
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B. Using your vector models from above, describe y as a matrix-vector product with sti↵ness matrix
K and vector u. Demonstrate how to calculate K and explicitly calculate it’s value in general.

Solution: In this problem, we will using equations (1), (2), and (3) to create sti↵ness matrix
K. To this end, note

y(t) = �A

TFs(t) by equation (3)

= �A

T
Ce(t) by equation (2)

= �A

T
CAu(t) by equation (1)

= �Ku(t)

If we let K = A

T
CA, we can then write

y(t) = �Ku(t) (4)

We can form our sti↵ness matrix K explicitly using matrix-matrix multiplication with

K =


1 �1 �1 0
0 1 1 �1

�
2

664

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3

775

2

664

1 0
�1 1
�1 1
0 �1

3

775 =


k1 + k2 + k3 �k2 � k3

�k2 � k3 k2 + k3 + k4

�
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C. Show how to use Newton’s second law leads to an equation of the form

Ku = Fe

where Fe represents the vector of external forces on each mass.

Solution: From Newton’s second law, we know that

Net Force = Mass ⇥ Acceleration

We can apply this law to each mass individually to create a di↵erential equation that describes
our system, given by

⌃F =


⌃F1

⌃F2

�
=


m1 ü1(t)
m2 ü2(t)

�
=


m1 0
0 m2

� 
ü1(t)
ü2(t)

�

where ⌃Fi represents the net force on mass i and üi(t) =
d

2

dt

2

h
ui(t)

i
for i 2 {1, 2}. We write

the matrix-vector multiplication

⌃F = M ü(t) where M =


m1 0
0 m2

�
(5)

Further, since all forces are assumed to be positive in the downward direction we see

⌃F1

⌃F2

�
=


Fe1(t)
Fe2(t)

�
+


y1(t)
y2(t)

�

Thus, we can write

⌃F = Fe(t) + y(t) (6)

By combing equations (4), (5), and (6), we see

M ü(t) = Fe(t) + y(t)

=) M ü(t) = Fe(t) +�Ku(t)

By moving �K onto the other side of the equation, we have

M ü(t) +Ku(t) = Fe(t) (7)

Since we have assume that we study the system at equilibrium for t = T , we know ü(T ) = 0
and we have

K u(T ) = Fe(T )

Remark (for students who want to earn above a 100%):

– In this derivation, we’ve used a very general approach to allow t 2 (0, T ]. Only at the
very end of our work, did we substitute the value of t = T to represent the case that our
masses have settled down to equilibrium. As we will see, this general approach will come
in very useful during our discussion of the eigenvalue-eigenvector problem.

– In fact, we have derived a coupled ordinary di↵erential equation in the work above. For
those of you that have taken (or will take) Math 2A at Foothill, you may notice that
equation (7) is a vector version of the 2nd order di↵erential equation for a harmonic
oscillator with no damping and general forcing function.
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23. (10 pts) Let’s consider the space of 4 ⇥ 4 matrices. Let Sik(c) 2 R4⇥4 be a shear matrix, as defined in
class. Then, find vector ⌧ 2 R4 such that

S41(�4) · S31(2) · S21(�5) = I4 � ⌧ eT1

Show your work. Explain how you found vector ⌧ and demonstrate your mastery of the matrix-matrix
multiplication and outer product operations.

Solution: Option 1: Matrix-Matrix Multiplication Version- Let’s recall the outer-product
definition of shear matrices

Sik(c) = In + c ei e
T
k

We are told n = 4 in the problem statement. Using our outer product definition, we see

S41(�4) =

2

664

1 0 0 0
0 1 0 0
0 0 1 0

�4 0 0 1

3

775 , S31(2) =

2

664

1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

3

775 , S21(�5) =

2

664

1 0 0 0
�5 1 0 0
0 0 1 0
0 0 0 1

3

775

We can use any version of our definition for matrix multiplication to find

S41(�4) · S31(2) · S21(�5) =

2

664

1 0 0 0
0 1 0 0
0 0 1 0

�4 0 0 1

3

775 ·

2

664

1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

3

775 ·

2

664

1 0 0 0
�5 1 0 0
0 0 1 0
0 0 0 1

3

775

=

2

664

1 0 0 0
�5 1 0 0
2 0 1 0

�4 0 0 1

3

775

Then, we also notice

2

664

1 0 0 0
�5 1 0 0
2 0 1 0

�4 0 0 1

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775�

2

664

0 0 0 0
5 0 0 0

�2 0 0 0
4 0 0 0

3

775

=

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775�

2

664

0
5

�2
4

3

775
⇥
1 0 0 0

⇤

Thus, we see that our desired ⌧ as described in our problem statement is given by

⌧ =

2

664

0
5

�2
4

3

775
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