
M2B: EXAM 2, V4B c© Jeffrey A. Anderson ANSWER KEY

1. (8 points) Let x,y ∈ Rn. Then use the algebraic properties of the inner product and 2-norm to prove

‖x + y‖22 + ‖x− y‖22 = 2
(
‖x‖22 + ‖y‖22

)
Draw a diagram associated with this problem and interpret this result geometrically.

Solution: Let x,y ∈ Rn. Consider:

‖x + y‖22 = (x + y) · (x + y)

= x · (x + y) + y · (x + y)

= x · x + x · y + y · x + y · y

= ‖x‖22 + 2 x · y + ‖y‖22

Using the same reasoning, we can find

‖x− y‖22 = (x− y) · (x− y)

= x · (x− y)− y · (x− y)

= x · x− x · y − y · x + y · y

= ‖x‖22 − 2 x · y + ‖y‖22

Then, combining these two results, we see

‖x + y‖22 + ‖x− y‖22 = ‖x‖2 + 2 x · y + ‖y‖22 + ‖x‖22 − 2 x · y + ‖y‖22

= 2‖x‖22 + 2‖y‖22

= 2
(
‖x‖22 + ‖y‖22

)
This is exactly what we wanted to show.











2. (8 points) Let n ∈ N with i, k ∈ [n] and i 6= k. Use the definition of the transposition matrix Pik to find
the output of the product eTk · Pik · ei. Show your work.

Solution: Let’s consider a specific case to build intuition. To this end, assume n = 6 with i = 2
and k = 5. Then, we consider the product

eT5 · P25 · e2 =
[
0 0 0 0 1 0

]


1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1




0
1
0
0
0
0


Let’s read left-to-right and focus on the first product:

eT5 · P25 =
[
0 0 0 0 1 0

]


1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 =
[
0 1 0 0 0 0

]

In this case, we take linear combinations of the rows of P25 using scalar coefficients from the entries
of eT5 . Based on the structure of the vector eT5 , we see that we pick off the fifth row of P25 in this
operation. Now when we multiply on the right by e2, we see

eT5 · P25 · e2 =
[
0 1 0 0 0 0

]
·


0
1
0
0
0
0

 = 1

Thus, we see that
eT5 · P25 · e2 = 1.

We could have equivalently began with the product P25 · e2 via the column partition version of
matrix-vector multiplication and the proceeded to multiply the output on the left by eT5 . The result
is the same either way.
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3. (8 points) Here Consider the list set of vectors

a1 =


−1

0
0
0
0
−2

 , a2 =


0
1
0
−1

0
0

 , a3 =


0
0
−4

0
4
0

 , a4 =


2
−2

2
2
−2

4


A. (2 points) Show that these vectors are linear dependent by demonstrating that you can write one

of these vectors as a linear combination of the other three.

Solution: We see that we can write a4 as a linear combination of a1,a2 and a3 as follows:

a4 = −2 · a1 +−2 · a2 +−1

2
· a3

Notice, that with the same technique we discussed in lecture, we can find a set of nonzero
scalars that combine to produce the zero vector with

0 = 2 · a1 + 2 · a2 +
1

2
· a3 + a4

If we set xT =
[
2 2 1

2 1
]

and we define the column-partition of a matrix A ∈ R6×4 with
A(:, k) = ak for k ∈ [4], then we see that

A · x =
[
a1 a2 a3 a4

]
·


2
2
1
2
1

 = 0 ∈ R6

B. (2 points) For k ∈ [4], define A ∈ R6×4 with A(:, k) = ak. Let B = AT . Find a nonzero vector
y ∈ R4 such that

yT ·B = 0

Solution: This problem is asking us to re-interpret our observation from part A by setting
y = x. Specifically, we see that for i ∈ [4], we have B(i, :) = [A(:, i)]

T
. Thus, the nonzero linear

combination that sends the column vectors of A to the zero vector in R6 must be the same as
the nonzero linear combination of the rows of B that get sent to the zero vector in R1×6. In
other words, let’s set

yT =
[
2 2 1

2 1
]

Then, when we consider

yT ·B =
[
2 2 1

2 1
]
·


−1 0 0 0 0 −2

0 1 0 −1 0 0
0 0 −4 0 4 0
2 −2 2 2 −2 4


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Using the row-partition version of (row) vector-matrix multiplication, we can take linear com-
binations of the rows of B using scalar coefficients from the vector yT , yielding

yT ·B = + 2 ·
[
−1 0 0 0 0 −2

]
+ 2 ·

[
0 1 0 −1 0 0

]
+

1

2
·
[
0 0 −4 0 4 0

]
+ 1 ·

[
2 −2 2 2 −2 4

]
=
[
0 0 0 0 0 0

]

C. (2 points) Is the vector y ∈ R4 that you found in part B above unique? Explain your reasoning.

Solution: No, the scalars we found above are not unique. We can take any scalar multiple of
the vector y and the result will still produce a linear combination equal to zero:

(αy)
T ·B = α · yT ·B = α · 0 = 0 ∈ R1×6

Thus, we see there are an infinite number of nonzero vectors that send the rows of B to zero
via linear combination.

D. (2 points) Find a vector in R4 that is not in Span{a1,a2,a3,a4}. Justify your answer.

Solution: Let A be the matrix defined above in Part B of this problem. Recall the definition
of the span of a set of vectors is given by

Span{a1,a2,a3,a4} =
{
b : b = A · x for any x ∈ R4

}
In other words, if we define the matrix-vector multiplication function f(x) = A · x, then
Rng(f) = Span{ak}4k=1 ⊆ R6. In this case, we want to find an element z ∈ R6 such that for
all x ∈ R4 we have z 6= A · x. With this in mind, let x be any vector in R4 and consider

z = A · x = x1 ·


−1

0
0
0
0
−2

+ x2 ·


0
1
0
−1

0
0

+ x3 ·


0
0
−4

0
4
0

+ x4


2
−2

2
2
−2

4

 =


−x1 + 2x4
x2 − 2x4

−4x3 + 2x4
−x2 + 2x4
4x3 − 2x4
−2x1 + 4x4


With this, we notice the following patterns:

Entry6(z) = 2 · Entry1(z), Entry4(z) = − · Entry2(z), Entry5(z) = − · Entry3(z).

To construct a vector z not in the span, we simply need to violate these patters. One way to
do this is to set

zT =
[
1 0 0 0 0 1

]
Since the first and sixth entry of this vector violate the structure of vectors in the span, we see
that this vector cannot be in said span. This is exactly what we were asked to show.
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4. (8 points) Suppose we let n = 5. Recall that if i, j, k ∈ [n] with i 6= k, we defined the elementary matrices
Sik(c), Dj(c), and Pik for a general scalar coefficient c ∈ R. Using these definitions, find the matrix sum
given by

D3(4)−D2(−2) + S52(3)− S25(3) + P24 + P15

Solution: Consider the difference of dilation matrices:

D3(4)−D3(4) =


1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 0 1

−


1 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


0 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 0 0
0 0 0 0 0


We also know that the desired difference of shear matrices is given by:

S52(3)− S25(3) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 3 0 0 1

−


1 0 0 0 0
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


0 0 0 0 0
0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 3 0 0 0


Finally, we have the sum of transposition matrices can be written as

P24 + P15 =


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

−


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

 =


1 0 0 0 1
0 1 0 1 0
0 0 2 0 0
0 1 0 1 0
1 0 0 0 1


Then, our desired sum is given as

0 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 0 0
0 0 0 0 0

+


0 0 0 0 0
0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 3 0 0 0

+


1 0 0 0 1
0 1 0 1 0
0 0 2 0 0
0 1 0 1 0
1 0 0 0 1


which can be written succinctly as the matrix

1 0 0 0 1
0 4 0 1 3
0 0 5 0 0
0 1 0 1 0
1 3 0 0 1



Math 2B: Exam 2, V4B c© Jeffrey A. Anderson Page 5 of 16



5. (10 points) For the problem below, consider the following model for a 3-mass, 6-spring chain. Note that
positive positions and positive displacements are marked in the downward direction. Also assume that
the mass of each spring is zero and that these springs satisfy the ideal version of Hooke’s law exactly.
Finally, assume that the massed move only in one axis and that the masses do not rotate in this system.

m1

m2

m3

Ground

Ceiling

−
x
+k1

k2

k3

k4

Spring Mass Chain at equilibrium

NO external force

k5

k6

m1

m2

m3

Ground

Ceiling

k1

k2

k3

k4

k5

k6

Spring Mass Chain with

external force at t sec

−
u
+
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A. (2 points) Generate vector models (using appropriate matrices and vectors) to define

x0,x(t), and u(t)

where these vectors represent the equilibrium position vector, the positions of each mass at time t,
and the displacement vector, respectively (as discussed in class and in our lesson notes).

Solution: Let’s set up our model of the 2-mass, 5-spring chain.

POSITION VECTORS:

Let’s define x0 ∈ R3 store the equilibrium positions of the center of each mass at initial time
t = t0 = 0 sec. In other words, for i ∈ [3] we suppose xi stores the measured position of the
center of mass when the system is resting at equilibrium with no external force, zero accelera-
tion, zero velocity, and zero net internal force on each mass. Since there are three masses, we
track all three equilibrium positions and set

x0 =

x1x2
x3

 .
On the other hand, suppose we apply an external force to our system at some time and let
the masses move dynamically. For i ∈ [3], let’s use the real-valued function xi(t) to store the
measured position of the center of mass i along the metric ruler at time t ∈ [t0, T ) ⊆ R. We
can then store the position of the center of all three masses as a vector valued function x(t)
where x : [t0, T ) ⊆ R −→ R3 with

x(t) =

x1(t)
x2(t)
x3(t)


DISPLACEMENT VECTOR:

With this we can set up our displacement vector u(t). In this case, we have assumed the
zero position of our ruler to be on the ceiling at the top of our apparatus. Moreover, we ori-
ent positive position measurements in the downward direction (toward the ground below the
masses). We want ui(t) to measure the displacement of mass i away from it’s initial position.
Since xi > xi(t) in our diagram, we see that ui(t) > 0 if and only if xi(t) − xi > 0. Thus, we
define our displacement vector

u(t) =

u1(t)
u2(t)
u3(t)

 =

x1(t)− x1
x2(t)− x2
x3(t)− x3

 =

x1(t)
x2(t)
x3(t)

−
x1x2
x3

 = x(t)− x0
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Solution: Remark (for students who want to earn top marks): ORIENTATION OF RULER:

A. In this case, we choose to orient our ruler so that the zero position was on the top
of the apparatus and positive position measurements are in the downward direction.
This guarantees that positive displacement measurements are oriented in the downward
position calculated as the position of mass i at time t minus the equilibrium position.This
follows the convention in physics to calculate displacement as “final” position minus
“initial position.” In other words, u(t) = x(t)− x0.

B. In this derivation, we assumed that the position of mass i at time t was described by a
continuous function xi(t). As we will see, this very general modeling paradigm gives rise
to an eigenvalue problem.

B. (2 points) Show how to calculate the elongation vector e(t) as a matrix-vector product

e(t) = A · u(t)

Write the entry-by-entry definition of matrix A and explain how you derived the equation for each
coefficient ei(t) in this vector. Your answer should include specific references to the diagrams below.
As a hint, remember there should be one entry of e(t) for each spring in the system.

Solution: Since the elongation vector e(t) has one entry for each spring and there are 6 springs
in this system, we know that e(t) must output a 6× 1 vector. The ith entry ei(t) of this elon-
gation vector represents the “elongation” of spring i at time t. To measure elongation of the
ith spring, we subtract the length of spring i when the system is at equilibrium from the length
of this spring again at time t. To find the elongation of each spring, consider the following
diagrams:

m1

m1

u1(t)

m1

m2

u1(t)

m1

m2

u2(t)

m2

m3

u2(t)

m2

m3

u3(t)

m3

m3

u3(t)

The four diagrams above follow the same pattern as discussed in lecture for our 2−mass,
3−spring system. However, in this system we have two additional springs labeled k5 and k6
which have a different pattern. To analyze these spring elongations, let’s draw diagrams that
simplify the problem and focus on the changes for these springs in particular:

m2

m2

u2(t)

m1

m3

u1(t)

m1

m3

u3(t)
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Solution: Positive ei(t) values occur when the length of this spring at time t is larger than
the length of this spring at equilibrium.

ELONGATION VECTOR:

Using these diagrams, we see that our desired elongation vector is given by

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)

 =


u1(t)

u2(t)− u1(t)
u3(t)− u2(t)
−u3(t)
u2(t)

u3(t)− u1(t)

 = u1(t) ·


1
−1

0
0
0
−1

+ u2(t) ·


0
1
−1

0
1
0

+ u3(t) ·


0
0
1
−1

0
1


We can write this linear combination as a matrix-vector product as following

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)

 =


1 0 0
−1 1 0

0 −1 1
0 0 −1
0 1 0
−1 0 1


u1(t)
u2(t)
u3(t)



where u is the 3×1 displacement vector from part (A) above. In this case, the matrix A ∈ R4×3

is given by

A =


1 0 0
−1 1 0

0 −1 1
0 0 −1
0 1 0
−1 0 1


Thus, we write e(t) as a matrix vector product

e(t) = A · u(t) . (1)
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C. (2 points) Show how to calculate the spring force vector fs(t) as a matrix-vector product

fs(t) = C · e(t)

Write the entry-by-entry definition of matrix C and discuss how Hooke’s law is used to create the
vector of forces for each spring.

Solution: Recall that Hooke’s law states that the change in internal force stored inside spring
i is directly proportional to the elongation of the spring. In other words, for a spring with
spring constant ki, Hooke’s law states that

fsi(t) = ki · ei(t)

The vector fs(t) can stores the internal forces in each of the four springs in our system due to
the elongations discussed in part (B) above.

FORCE VECTORS FOR SPRINGS:

Now, let’s move onto finding the internal forces stored in each spring. To this end, let
fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)
fs6(t)

 = e1(t) ·


k1
0
0
0
0
0

+ e2(t) ·


0
k2
0
0
0
0

+ e3(t) ·


0
0
k3
0
0
0

+ e4(t) ·


0
0
0
k4
0
0

+ e5(t) ·


0
0
0
0
k5
0

+ e6(t) ·


0
0
0
0
0
k6


The force vector fs(t) as the matrix-vector product

fs(t) =


fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)
fs6(t)

 =


k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6




e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)


where e is our elongation vector from above. The diagonal matrix C ∈ R4×4 is defined as

C =


k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6


We write

fs(t) = C · e(t) (2)
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D. (2 points) Create “free-body” diagrams that show all forces acting on each mass mi. Use these
diagrams to derive the vector

y(t) = −AT · fs(t)

of internal forces. Also, show how to combine your equation for y(t) with equations from parts B
and C to form the stiffness matrix K.

Solution:

Let’s consider the net internal forces on each mass. To do so, we draw a free-body diagram for
each mass in our system, as seen below.

m1

M
as

s
1

fs1(t)

fs2(t)

fe1(t) fs6(t)

m2

M
as

s
2

fs2(t)fs5(t)

fs3(t)

fe2(t)

m2

M
as

s
2

fs3(t) fs6(t)

fs4(t)

fe3(t)

When analyzing the net internal forces, we work to calculated the net force acting on each mass
when considering ONLY the springs within the system. In other words, if the coupled chain
of the masses and springs is our system, we want only to focus on the net forces within this
system (and ignore external forces that may act on each mass for now).

NET INTERNAL FORCES FOR MASS-SPRING CHAIN:

We now introduce the vector y(t) to store the net force on each mass. Each entry yi(t) represents
the difference between fsi(t) and fsi+1

(t). When writing the individual entries of y(t) we will
assume that positive net forces result in positive displacements. Since we’ve oriented positive
displacement in the downward direction, we also orient positive force in the downward direction.

y(t) =

y1(t)
y2(t)
y3(t)

 =

fs2(t) + fs6(t)− fs1(t)
fs3(t)− fs2(t)− fs5(t)
fs4(t)− fs3(t)− fs6(t)

 = −

1 −1 0 0 0 −1
0 1 −1 0 1 0
0 0 1 −1 0 1



fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)
fs6(t)


We transform this into a matrix-vector product

y(t) = −AT · fs(t) (3)

where A was defined in equation (1) for our model of the elongation vector e(t). Notice that
we’ve factored out a negative sign in order to make this statement.
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Solution: In this problem, we will using equations (1), (2), and (3) to create stiffness matrix
K. To this end, note

y(t) = −AT · fs(t) by equation (3)

= −AT · C · e(t) by equation (2)

= −AT · C ·A · u(t) by equation (1)

= −K · u(t)

If we let K = AT · C ·A, we can then write

y(t) = −K · u(t) (4)

We can form our stiffness matrix K explicitly using matrix-matrix multiplication with

K =

1 −1 0 0 0 −1
0 1 −1 0 1 0
0 0 1 −1 0 1



k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6




1 0 0
−1 1 0

0 −1 1
0 0 −1
0 1 0
−1 0 1



=

k1 + k2 + k6 −k2 −k6
−k2 k2 + k3 + k5 −k3
−k6 −k3 k3 + k4 + k6


This is a tridiagonal, symmetric matrix.
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E. (2 points) Use Newton’s second law to derive the matrix equation

M · ü(t) +K · u(t) = fe(t)

where fe(t) represents the vector of external forces on each mass. Show the entry-by-entry definition
of the mass matrix M .

Solution: From Newton’s second law, we know that

Net Force acting on an object = Mass of object× Acceleration of object

In order to state this law for each mass in our system, let

üi(t) =
d2

dt2

[
ui(t)

]
be the acceleration of mass i at time t for i ∈ {1, 2, 3}. Then, for mass i, the coefficient

mi · üi(t)

measures the mass multiplied by the acceleration. Organizing all three of these values into a
column vector yields m1 ü1(t)

m2 ü2(t)
m3 ü3(t)

 =

m1 0 0
0 m2 0
0 0 m3

[ü1(t)
ü2(t)

]

By defining the 3× 3 mass matrix

M =

m1 0 0
0 m2 0
0 0 m3


these mass times acceleration calculations can be written as a matrix-vector multiplication

M · ü(t) (5)

The next step is to calculate the net force on mass i. To do so, let’s look back at our free-body
diagram from part D above. We can calculate the net forces on all masses simultaneously using
vector notation. To do so, we isolate internal net forces from external forces to find that We
can organize all three net force calculations as a column vectorfs2(t) + fs6(t)− fs1(t)

fs3(t)− fs2(t)− fs5(t)
fs4(t)− fs3(t)− fs6(t)

+

fe1(t)
fe2(t)
fe3(t)

 =

y1(t)
y2(t)
y3(t)

+

fe1(t)
fe2(t)
fe3(t)


Thus, the net force calculations for each mass in this system is given by

y(t) + fe(t) (6)

where vector fe(t) gives the external forces on each mass in our system. Newton’s second law
indicates that the mass times acceleration vector from equation (5) is equal to the net force
vector from equation (6)

M · ü(t) = y(t) + fe(t)
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Solution: Now, use the stiffness matrix K from equation (4) to represent the net internal force
vector y(t), yielding

M · ü(t) = −K · u(t) + fe(t)

By moving −K onto the other side of the equation, we have

M ü(t) +Ku(t) = fe(t) (7)

Since we have assume that we study the system at equilibrium for t = T , we know ü(T ) = 0
and we have

K u(T ) = fe(T )

Remark (for students who want to earn top marks):

– In this derivation, we’ve used a very general approach to allow t ∈ [t0, T ). Only at the
very end of our work, did we substitute the value of t = T to represent the case that our
masses have settled down to equilibrium. As we will see, this general approach will come
in very useful during our discussion of the eigenvalue-eigenvector problem.

– In fact, we have derived a coupled ordinary differential equation in the work above. For
those of you that have taken (or will take) Math 2A at Foothill, you may notice that
equation (7) is a vector version of the 2nd order differential equation for a harmonic
oscillator with no damping and general forcing function.
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6. (6 points) Consider the directed graph given below. Use this graph to fill in the corresponding incidence
matrix table. Let A ∈ R8×5 be the incidence matrix corresponding to this directed graph.

•u1 •u2

•
u3

•
u4

•
u5

e1

e2e3

e4

e5

e6

e7

e8

Directed Graph
Incident Matrix Table

u1 u2 u3 u4 u5

e1 -1 1 0 0 0
e2 0 1 0 -1 0
e3 1 0 0 0 -1
e4 0 0 0 -1 1
e5 0 0 -1 1 0
e6 1 0 -1 0 0
e7 0 0 -1 0 1
e8 0 -1 1 0 0

Find a nonzero vector x ∈ R5 such that

A · x = 0

Then determine whether the columns of A are linearly independent vectors. Explain your reasoning.

Solution: From our table above, we notice that the entry-by-entry definition of our incidence matrix
A ∈= R8×5 corresponding to the given directed graph is

A =



−1 1 0 0 0
0 1 0 −1 0
1 0 0 0 −1
0 0 0 −1 1
0 0 −1 1 0
1 0 −1 0 0
0 0 −1 0 1
0 −1 1 0 0


This matrix has very special structure that arises from our definition. In particular, in each row of
A we notice that there are exactly two nonzero entries whose values are 1 and −1. Thus, if we were
to sum all coefficients in each row, we would produce the zero scalar. However, when summing all
values in each row is equivalent to multiplying the matrix A on the right by the vector 1 ∈ R5 that
has five entries, each of which is equal to one. In other words, we see

A · 1 =



−1 1 0 0 0
0 1 0 −1 0
1 0 0 0 −1
0 0 0 −1 1
0 0 −1 1 0
1 0 −1 0 0
0 0 −1 0 1
0 −1 1 0 0




1
1
1
1
1

 =



0
0
0
0
0
0
0
0


This is exactly what we wanted to produce. Moreover, we know that the columns of A are linearly
dependent since we can find a nonzero linear combination of these columns that sends the columns
to zero.
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Challenge Problem

7. (Optional, Extra Credit, Challenge Problem) Let x,y ∈ Rn be a column vectors. Recall that we defined
the 2-norm of x to be

‖x‖2 =

(
n∑

i=1

x2i

)1/2

This is one example of a much larger class of vector norms, known as p−norms. To create a p−norm,
we choose a real number p ≥ 1 and set

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

Using this definition, suppose we have two real numbers p, q ∈ R such that p > 1, q > 1, and
1

p
+

1

q
= 1.

Then, show that

|xT · y| ≤ ‖x‖p · ‖x‖q
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