
M2B: EXAM 1, V2A c© Jeffrey A. Anderson ANSWER KEY

True/False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you’ve chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T F Suppose A ∈ R4×7 has three nonpivot columns. Then, we know that there will be
exactly three solutions to A · x = 0

2. T F Let A ∈ Rm×n and x ∈ Rm×1. Then xT ·A =
m∑
i=1

xi A(i, :)

3. T F Suppose A ∈ R4×4 with aii = 0 for each i = 1, 2, 3, 4. Then det(A) = 0.

4. T F Let j, n ∈ N with 1 ≤ j ≤ n. If c ∈ R is nonzero and Dj(c) ∈ Rn×n, then(
Dj(c)

)−1

= In +

(
1− c

c

)
ej · eTj

5. T F If A ∈ R3×3 has two pivots, then it is possible to find invertible matrices
E1, E2, ..., Et ∈ R3×3 such that

Et · Et−1 · · ·E2 · E1 ·A =

1 0 0
0 1 0
0 0 0





Multiple Choice (50 points: 5 points each) For the problems below, circle the correct response
for each question. After you’ve chosen, mark your answer on your Scantron form.

6. Let AT ∈ R6×5, B ∈ R5×4, and C ∈ R3×6. Let the matrix D be formed by the product

DT = BT ·A · CT

What are the dimensions of the matrix [D(2, :)]
T

?

A. 3× 1 B. 4× 3 C. 1× 3 D. 1× 4 E. 4× 1

7. Let B ∈ R3×3 such that


1 0 0

0 3
2 0

0 0 1




1 0 0

0 0 1

0 1 0




1 0 0

0 1 0

0 0 1
3




0 0 1

0 1 0

1 0 0




1 0 0

−3 1 0

2 0 1



b11 b12 b13

b21 b22 b23

b31 b32 b33


︸ ︷︷ ︸

B

=


0 1 0

1 0 0

0 0 1




6 2 −1

0 1 4

0 0 − 2
3



Which of the following gives det(B):

A. 2 B. −12 C. −8 D. 8 E. −2

8. Let A ∈ Rn×n with n > 4. Suppose that you know A has 1 nonpivot columns. Which of the following
must be true:

A. RREF (A) = In

B. There exists some b ∈ Rn such that b /∈ Span{A(:, 1), A(:, 2), ..., A(:, n)}
C. Span{A(:, 1), A(:, 2), ..., A(:, n)} = Rn

D. aii = 0 for at least one index i for 1 ≤ i ≤ n

E. det(A) 6= 0
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For the next two questions, consider the following general linear-systems problems:


−2 1 4 2 14 2 12

2 −1 2 4 −2 4 6
2 −1 −2 0 −10 1 −7
2 −1 4 6 2 8 10


︸ ︷︷ ︸

A

·



x1

x2

x3

x4

x5

x6

x7


︸ ︷︷ ︸

x

=


10
−4
−10
−6


︸ ︷︷ ︸

b

9. Which of the following vectors is a solution to A · x = 0?

A.



1
0
1
1
0
0
0


B.



−3
0
2
0
1
0
0


C.



1
2
0
0
0
0
0


D.



−1
0
−4

0
0
1
−1


E. None of these

10. Vector b ∈ R4 is NOT in the span of which of the following sets?

A. {A(:, 1), A(:, 3), A(:, 6)} B. {A(:, 2), A(:, 3), A(:, 6)} C. {A(:, 2), A(:, 4), A(:, 7)}

. D. {A(:, 1), A(:, 3), A(:, 5)} E. {A(:, 4), A(:, 5), A(:, 6)}
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11. Suppose we want to solve the linear systems problem
2 −4 0 2
4 −4 −2 5
−6 4 5 −6

2 0 −4 1


︸ ︷︷ ︸

A

·


x1

x2

x3

x4


︸ ︷︷ ︸

x

=


6
8
−5
−4


︸ ︷︷ ︸

b

If x ∈ R4 is the solution to this problem, then find the value of the dot product:

[
1 −1 1 −1

] 
x1

x2

x3

x4


A. −3 B. 1 C. −1 D. 3 E. −5

12. Define four vectors in R4 as

a1 =


1
1
1
1

 , a2 =


0
5

10
15

 , a3 =


0

25
100
225

 , a4 =


5

−45
−45

5


We can confirm that a4 = 5 · a1 − 15 · a2 + 1 · a3. Choose the vector x ∈ R4 such that[

a1 a2 a3 a4
]
· x = 0

A.


45
−1

1
−1

 B.


5

−15
1
1

 C.


−5
15
−1
−1

 D.


5

−15
1
−1

 E. The product will never be zero
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13. Consider the following nonsingular linear-systems problem 3 1 −2
−3 1 0
−6 0 1

x1

x2

x3

 =

3
5
4


Let A ∈ R3×3 be the coefficient matrix in this problem and b ∈ R3 be the vector on the right-hand
side. Find the matrices L,U ∈ R3×3, where the L and U factors of A, respectively, from the the LU
factorization of A. Now, solve the two linear system problems

L · y = b, U · x = y

Find the value of y · x :

A. 9 B. −14 C. 4 D. −39 E. −159

14. Let matrix B ∈ R4×4 be given as follows:


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 =


1 0 0 0

0 1
2 0 0

0 0 1 0

0 0 0 1




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




1 3 0 0

0 1 0 0

0 0 1 0

0 0 0 1


In symbols, we can write

B = D2

(
1

2

)
·A · S12(3)

Using this definition, we see that a22 is equal to which of the following:

A. 3
2 b21 + 1

2 b22 B. −6 b21 + 2 b22 C. 6 b21 + 2b22 D. 2 b22 E. 1
2 b22
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For Problems 15, consider the following model for a 3-mass, 4-spring chain. Note that positive positions
and positive displacements are marked in the downward direction. Assume the acceleration due to
earth’s gravity is g = 9.8m/s2. Also assume that the mass of each spring is zero and that these springs
satisfy the ideal version of Hooke’s law exactly.

m1

M
as

s
1

m2

M
as

s
2

m3

M
as

s
3

Ground

Ceiling

−
x

+
k1 = 16

N

m

k2 = 8
N

m

k3 = 8
N

m

k4 = 8
N

m

Spring Mass Chain at equilibrium

NO external force

x1

x2

x3

m1

m2

m3

Ground

Ceiling

−
u

+
k1

k2

k3

k4

Spring Mass Chain at t sec

WITH external force

x1(t)

x2(t)

x3(t)

15. Recall that the initial position vector x0 and the mass vector m store the positions, measured in meters,
of each mass at equilibrium when t = 0 and the mass measurements, measured in kg, respectively.
Suppose we measure

x0 =

x1

x2

x3

 =

0.3
0.5
0.7

 m =

m1

m2

m3

 =

0.080
0.040
0.080


Which of the following gives the vector x(T ) =

[
x1(T ) x2(T ) x3(T )

]T
as measured in meters, used

to store the positions of each mass at equilibrium when when t = T? If necessary, please round your
answers to the nearest 3 places after the decimal.

A.

0.230
0.388
0.595

 B.

0.245
0.310
0.327

 C.

0.370
0.612
0.805

 D.

0.545
0.810
1.027

 E.

0.070
0.112
0.105


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Free Response

16. (10 pts) Consider the following matrix:

A =

 2 −1 0
−1 2 −1

0 −1 2


A. Use a sequence of two matrix multiplications to transform A into upper-triangular U . Specifically

identify the 3× 3 matrices E1 and E2.

Solution: The first thing we will do is to choose pivot 1 in entry (1, 1) and zero out all strictly
lower-triangular entries in column 1. To do so, we will multiply matrix A on the left by a shear
matrix: 

1 0 0

1
2 1 0

0 0 1


︸ ︷︷ ︸

L1

·


2 −1 0

−1 2 −1

0 −1 2


︸ ︷︷ ︸

A

=


2 −1 0

0 3
2 −1

0 −1 2


︸ ︷︷ ︸

L1·A

Now that we have canceled out all nonpivot elements in column 1, we move onto column 2.
In this case, we choose the nonzero coefficient in entry (2, 2) to be pivot 2 and annihilate all
nonpivot entries below this pivot element:

1 0 0

0 1 0

0 2
3 1


︸ ︷︷ ︸

L2

·


2 −1 0

0 3
2 −1

0 −1 2


︸ ︷︷ ︸

L1·A

=


2 −1 0

0 3
2 −1

0 0 4
3


︸ ︷︷ ︸

U

The factor U above is the upper-triangular matrix we are looking for.

B. Find the LU factorization of the matrix A from above.

Solution: To form the corresponding lower-triangular matrix L we recall

L2 · L1 ·A = U =⇒ A =
(
L−1
1 · L

−1
2

)
· U

Moreover, since each Li has an easily calculated inverse, we write

L = L−1
1 · L

−1
2 =


1 0 0

− 1
2 1 0

0 0 1

 ·


1 0 0

0 1 0

0 − 2
3 1

 =


1 0 0

− 1
2 1 0

0 − 2
3 1


Then, we can write the LU factorization of A as

2 −1 0

−1 2 −1

0 −1 2


︸ ︷︷ ︸

A

=


1 0 0

− 1
2 1 0

0 − 2
3 1


︸ ︷︷ ︸

L

·


2 −1 0

0 3
2 −1

0 0 4
3


︸ ︷︷ ︸

U
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17. (10 pts) Let `32, `42 ∈ R and define the matrix L2 ∈ R4×4 be given by

L2 =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1

 = I4 + τ 2 · eT2 , where τ 2 =


0
0
`32
`42

 .

Prove L−1
2 =

(
I4 − τ 2 · eT2

)
.

Solution: Methods 1: Given a matrix A ∈ Rn×n, in order to prove matrix C ∈ Rn×n is the in-
verse of A, we need to show that A·C = In. To this end, let C = I4−τ 2 ·eT2 and consider the product:

L2 · C =
(
I4 + τ 2 · eT2

)
·
(
I4 − τ 2 · eT2

)
= I4 ·

(
I4 − τ 2 · eT2

)
+ τ 2 · eT2 ·

(
I4 − τ 2 · eT2

)
= I4 · I4 − I4 ·

(
τ 2 · eT2

)
+
(
τ 2 · eT2

)
· I4 −

(
τ 2 · eT2

)
·
(
τ 2 · eT2

)
= I4 · I4 − (I4 · τ 2) · eT2 + τ 2 ·

(
eT2 · I4

)
− τ 2 ·

(
eT2 · τ 2

)
· eT2

= I4 − τ 2 · eT2 + τ 2 · eT2 − τ 2 ·
(
eT2 · τ 2

)
· eT2

= I4 − τ 2 ·
(
eT2 · τ 2

)
· eT2

= I4 − τ 2 · 0 · eT2

= I4

The last equality results from adding the matrices −τ 2 · eT2 + τ 2 · eT2 = 0 ∈ Rn×n. We also executed
the product

eT2 · τ 2 =
[
0 1 0 0

]
·


0
0
`32
`42

 = 0

This verifies that C = L−1
2 as was claimed.
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Solution: Methods 2: Given a matrix A ∈ Rn×n, in order to prove matrix C ∈ Rn×n is the
inverse of A, we need to show that A · C = In. To this end, let C = I4 − τ 2 · eT2 . We can write the
entry-by-entry definition of this matrix as

C =


1 0 0 0
0 1 0 0
0 −`32 1 0
0 −`42 0 1


Then, consider the matrix product:

B =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1

 ·


1 0 0 0
0 1 0 0
0 −`32 1 0
0 −`42 0 1

 = L1 · C

In this case, let’s use the column-partition version of matrix-matrix multiplication to find each

column of B. To this end consider, calculate Column1(B) = L1 · Column1

(
C
)

as

B(:, 1) =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1




1
0
0
0

 = 1 ·


1
0
0
0

+ 0 ·


0
1
`32
`42

+ 0 ·


0
0
1
0

+ 0 ·


0
0
0
1

 =


1
0
0
0

 .

Now, the second column of B is Column2(B) = L1 · Column2

(
C
)

given by

B(:, 2) =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1




0
1
−`32
−`42

 = 0 ·


1
0
0
0

+ 1 ·


0
1
`32
`42

− `32 ·


0
0
1
0

− `42 ·


0
0
0
1

 =


0
1
0
0

 .

The third column Column3(B) = L1 · Column3

(
C
)

of our product is

B(:, 3) =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1




0
0
1
0

 = 0 ·


1
0
0
0

+ 0 ·


0
1
`32
`42

+ 1 ·


0
0
1
0

+ 0 ·


0
0
0
1

 =


0
0
1
0

 .

Finally, the last column Column4(B) = L1 ·Column4

(
C
)

is a linear combination of the columns of

A with scalars defined by the entries in the fourth column of C. This column vector is calculated
as follows

B(:, 4) =


1 0 0 0
0 1 0 0
0 `32 1 0
0 `42 0 1




0
0
1
0

 = 0 ·


1
0
0
0

+ 0 ·


0
1
`32
`42

+ 0 ·


0
0
1
0

+ 1 ·


0
0
0
1

 =


0
0
0
1

 .

Matrix B results from combining each of these outputs and is given by

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This confirms that L−1

2 = I4 − τ 2 · eT2 .
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18. (10 pts) Let B = A ·X where

A =


1 0 0
−1 1 0

0 −1 1
0 0 −1

 , X =

 2 0
−1 1

0 −2

 .

A. Use the row-partition version of matrix-matrix multiplication to find B(3, :). Show your steps.

Solution: Let’s use the row-partition version of matrix-matrix multiplication to find the third

row of B. To this end consider, calculate Row3(B) = Row3

(
A
)
·X as

B(3, :) =
[
0 −1 1

]
·

 2 0
−1 1

0 −2


= 0 ·

[
2 0

]
+−1 ·

[
−1 1

]
+ 1 ·

[
0 −2

]
=

[
1 −3

]

B. Use the column-partition version of matrix-matrix multiplication to find B(:, 2). Show your steps.

Solution: Now, let’s use the column-partition version of matrix-matrix multiplication to the

second column of B. To this end consider, calculate Column2(B) = A · Column2

(
X
)

as

B(:, 2) =


1 0 0
−1 1 0

0 −1 1
0 0 −1

 ·
 0

1
−2



= 0 ·


1
−1

0
0

+ 1 ·


0
1
−1

0

+−2 ·


0
0
1
−1

 =


0
1
−3

2

 .

C. Use the entry-by-entry version of matrix-matrix multiplication to find b42. Show your steps.

Solution: Now, let’s use the entry-by-entry definition of matrix-matrix multiplication to find

b42. To this end consider, calculate b42 = Enty42(B) = Row4

(
A
)
· Column2

(
X
)

as

b42 =
[
0 0 −1

]
·

 0
1
−2

 = 2
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19. (10 pts) Consider the following spring-mass system:

k3

k1

k2

m1

m2

Spring Mass Chain at equilibrium

NO external force

−
x

+

k4

k5

k3

k1

k2

m1

m2

k4

k5

−
u

+

Spring Mass Chain at t sec

WITH external force
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A. Generate vector models (using appropriate matrices and vectors) to define

x0,x(t), and u(t)

where these vectors represent the equilibrium position vector, the positions of each mass at time t,
and the displacement vector, respectively (as discussed in class and in our lesson notes).

Solution: Let’s set up our model of the 2-mass, 5-spring chain.

POSITION VECTORS:

Let’s define x0 to be the equilibrium position vector. Also, we will let x(t) store the posi-
tions of each mass at any time t. In this case, we let

x0 =

[
x1

x2

]
, x(t) =

[
x1(t)
x2(t)

]
where xi represents the position of mass i at equilibrium when masses are at rest with no
external force applied, as shown in the diagram. Further, xi(t) represents the position of mass
i at time t ∈ [t0, T ) ⊆ R.

DISPLACEMENT VECTOR:

With this we can set up our displacement vector u(t). In this case, we have assumed the
zero position of our ruler to be on the ceiling at the top of our apparatus. Moreover, we ori-
ent positive position measurements in the downward direction (toward the ground below the
masses). We want ui(t) to measure the displacement of mass i away from it’s initial position.
Since xi > xi(t) in our diagram, we see that ui(t) > 0 if and only if xi(t) − xi > 0. Thus, we
define our displacement vector

u(t) =

[
u1(t)
u2(t)

]
=

[
x1(t)− x1

x2(t)− x2

]
=

[
x1(t)
x2(t)

]
−
[
x1

x2

]
= x(t)− x0

ORIENTATION OF RULER:

Remark (for students who want to earn above a 90%):

A. In this case, we choose to orient our ruler so that the zero position was on the top
of the apparatus and positive position measurements are in the downward direction.
This guarantees that positive displacement measurements are oriented in the downward
position calculated as the position of mass i at time t minus the equilibrium position.This
follows the convention in physics to calculate displacement as “final” position minus
“initial position.” In other words, u(t) = x(t)− x0.

B. In this derivation, we assumed that the position of mass i at time t was described by a
continuous function xi(t). As we will see, this very general modeling paradigm gives rise
to an eigenvalue problem.
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B. Show how to calculate the elongation vector e(t) as a matrix-vector product

e(t) = A · u(t)

Write the entry-by-entry definition of matrix A and explain how you derived the equation for each
coefficient ei(t) in this vector. Your answer should include specific references to the diagrams below.

Solution: The elongation vector e(t) is a 5 × 1 vector. The ith entry ei(t) of this elongation
vector represents the “elongation” of spring i at time t. To measure elongation of the ith spring,
we subtract the length of spring i when the system is at equilibrium from the length of this
spring again at time t. To find the elongation of each spring, consider the following diagrams:

m1

m1

u1(t)

m1

m2

u1(t)

m1

m2

u2(t)

m3

m3

u3(t)

Positive ei(t) values occur when the length of this spring at time t is larger than the length of
this spring at equilibrium.

ELONGATION VECTOR:

Using these diagrams, we see that our desired elongation vector is given by

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 =


u1(t)

u2(t)− u1(t)
−u2(t)
−u1(t)
u2(t)

 = u1(t) ·


1
−1

0
−1

0

+ u2(t) ·


0
1
−1

0
1


We can write this linear combination as a matrix-vector product as following

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 =


1 0
−1 1

0 −1
−1 0

0 1


[
u1(t)
u2(t)

]

where u is the 3×1 displacement vector from part (A) above. In this case, the matrix A ∈ R4×3

is given by

A =


1 0
−1 1

0 −1
−1 0

0 1


Thus, we write e(t) as a matrix vector product

e(t) = A · u(t) . (1)
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C. Show how to calculate the spring force vector fs(t) as a matrix-vector product

fs(t) = C · e(t)

Write the entry-by-entry definition of matrix C and discuss how Hooke’s law is used to create the
vector of forces for each spring.

Solution: Recall that Hooke’s law states that the change in internal force stored inside spring
i is directly proportional to the elongation of the spring. In other words, for a spring with
spring constant ki, Hooke’s law states that

fsi(t) = ki · ei(t)

The vector fs(t) can stores the internal forces in each of the four springs in our system due to
the elongations discussed in part (B) above.

FORCE VECTORS FOR SPRINGS:

Now, let’s move onto finding the internal forces stored in each spring. To this end, let

fs(t) =


fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)

 =


k1 e1(t)
k2 e2(t)
k3 e3(t)
k4 e4(t)
k5 e5(t)

 = e1(t) ·


k1
0
0
0
0

+ e2(t) ·


0
k2
0
0
0

+ e3(t) ·


0
0
k3
0
0

+ e4(t) ·


0
0
0
k4
0

+ e5(t) ·


0
0
0
0
k5


The force vector fs(t) as the matrix-vector product

fs(t) =


fs1(t)
fs2(t)
fs3(t)
fs4(t)

 =


k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5



e1(t)
e2(t)
e3(t)
e4(t)
e5(t)


where e is our elongation vector from above. The diagonal matrix C ∈ R4×4 is defined as

C =


k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5


We write

fs(t) = C · e(t) (2)
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D. Create “free-body” diagrams that show all forces acting on each mass mi. Use these diagrams to
derive the vector

y(t) = −AT · fs(t)

of internal forces. Also, show how to combine your equation for y(t) with equations from parts B
and C to form the stiffness matrix K. You should also find the entry-by-entry definition of K.

Solution:

Let’s consider the net internal forces on each mass. To do so, we draw a free-body diagram for
each mass in our system, as seen below.

m1

M
as

s
1

fs1(t)

fs2(t)

fe1(t) fs4(t)

m2

M
as

s
2

fs2(t)fs5(t)

fs3(t) fe2(t)

When analyzing the net internal forces, we work to calculated the net force acting on each mass
when considering ONLY the springs within the system. In other words, if the coupled chain
of the masses and springs is our system, we want only to focus on the net forces within this
system (and ignore external forces that may act on each mass for now).

NET INTERNAL FORCES FOR MASS-SPRING CHAIN:

We now introduce the vector y(t) to store the net force on each mass. Each entry yi(t) represents
the difference between fsi(t) and fsi+1

(t). When writing the individual entries of y(t) we will
assume that positive net forces result in positive displacements. Since we’ve oriented positive
displacement in the downward direction, we also orient positive force in the downward direction.

y(t) =

[
y1(t)
y2(t)

]
=

[
fs2(t) + fs4(t)− fs1(t)
fs3(t)− fs2(t)− fs5(t)

]
= −

[
1 −1 0 −1 0
0 1 −1 0 1

]
fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)


We transform this into a matrix-vector product

y(t) = −AT · fs(t) (3)

where A was defined in equation (1) for our model of the elongation vector e(t). Notice that
we’ve factored out a negative sign in order to make this statement.
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Solution: In this problem, we will using equations (1), (2), and (3) to create stiffness matrix
K. To this end, note

y(t) = −AT · fs(t) by equation (3)

= −AT · C · e(t) by equation (2)

= −AT · C ·A · u(t) by equation (1)

= −K · u(t)

If we let K = AT · C ·A, we can then write

y(t) = −K · u(t) (4)

We can form our stiffness matrix K explicitly using matrix-matrix multiplication with

K =

[
1 −1 0 −1 0
0 1 −1 0 1

]
k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5




1 0
−1 1

0 −1
−1 0

0 1



=

[
k1 + k2 + k4 −k2
−k2 k2 + k3 + k5

]
This is a tridiagonal, symmetric matrix.
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E. Use Newton’s second law to derive the matrix equation

M · ü(t) + K · u(t) = fe(t)

where fe(t) represents the vector of external forces on each mass. Show the entry-by-entry definition
of the mass matrix M .

Solution: From Newton’s second law, we know that

Net Force acting on an object = Mass of object× Acceleration of object

In order to state this law for each mass in our system, let

üi(t) =
d2

dt2

[
ui(t)

]
be the acceleration of mass i at time t for i ∈ {1, 2, 3}. Then, for mass i, the coefficient

mi · üi(t)

measures the mass multiplied by the acceleration. Organizing all three of these values into a
column vector yields [

m1 ü1(t)
m2 ü2(t)

]
=

[
m1 0
0 m2

] [
ü1(t)
ü2(t)

]
By defining the 3× 3 mass matrix

M =

[
m1 0
0 m2

]
these mass times acceleration calculations can be written as a matrix-vector multiplication

M · ü(t) (5)

The next step is to calculate the net force on mass i. To do so, let’s look back at our free-body
diagram from part D above. The net force on mass i is given by

fsi+1
(t)− fsi(t) + fei(t) = yi(t) + fei(t)

We can organize all three net force calculations as a column vector[
fs2(t)− fs1(t)
fs3(t)− fs2(t)

]
+

[
fe1(t)
fe2(t)

]
=

[
y1(t)
y2(t)

]
+

[
fe1(t)
fe2(t)

]
Thus, the net force calculations for each mass in this system is given by

y(t) + fe(t) (6)

where vector fe(t) gives the ne Newton’s second law indicates that the mass times acceleration
vector from equation (5) is equal to the net force vector from equation (6)

M · ü(t) = y(t) + fe(t)
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Solution: Now, use the stiffness matrix K from equation (4) to represent the net internal force
vector y(t), yielding

M · ü(t) = −K · u(t) + fe(t)

By moving −K onto the other side of the equation, we have

M ü(t) + Ku(t) = fe(t) (7)

Since we have assume that we study the system at equilibrium for t = T , we know ü(T ) = 0
and we have

K u(T ) = fe(T )

Remark (for students who want to earn above a 100%):

– In this derivation, we’ve used a very general approach to allow t ∈ [t0, T ). Only at the
very end of our work, did we substitute the value of t = T to represent the case that our
masses have settled down to equilibrium. As we will see, this general approach will come
in very useful during our discussion of the eigenvalue-eigenvector problem.

– In fact, we have derived a coupled ordinary differential equation in the work above. For
those of you that have taken (or will take) Math 2A at Foothill, you may notice that
equation (7) is a vector version of the 2nd order differential equation for a harmonic
oscillator with no damping and general forcing function.
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Challenge Problem

20. (Optional, Extra Credit, Challenge Problem) Let m,n ∈ N. Suppose A ∈ Rm×n and C ∈ Rm×m where
the diagonal elements of C are positive cii > 0 for all i ∈ {1, 2, ...,m}. Let K = AT · C ·A. Prove that

K · x = 0 if and only if A · x = 0.

Solution: To prove this statement, we need to show:

i. If A · x = 0, then K · x = 0 for any x ∈ Rn

ii. If K · x = 0, then A · x = 0 for any x ∈ Rn

Case i: A · x = 0 =⇒ K · x = 0

Proof. Let x ∈ Rn such that A · x = 0. Then, by definition of matrix K we know

K · x =
(
AT · C ·A

)
· x by definition of K

= AT · C ·
(
A · x

)
by associativity of matrix multiplication

= AT · C · 0 since A · x = 0

= 0

This is what we wanted to show for this direction of the proof.
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Case ii: K · x = 0 =⇒ A · x = 0

Proof. Let x ∈ Rn such that K · x = 0. Then

0 = xT ·K · x

= xT ·
(
AT · C ·A

)
· x by definition of K

=
(
xT ·AT

)
· C · (A · x) by associativity of matrix multiplication

= yT · C · y setting y = A · x

We know that the diagonal elements of C are positive. Thus, when we consider

yT · C · y =
[
y1 y2 · · · ym

]

c11 0 · · · 0

0 c22
. . .

...
...

. . .
. . . 0

0 · · · 0 cmm



y1

y2

...
ym



= c11 · y21 + c22 · y22 + · · ·+ cmm · y2m

Since 0 = yT · C · y =
m∑
i=1

cii · y2i , we know that y2i = 0 for all i ∈ {1, 2, ...,m}. In other words, we

must have

y = A · x = 0

This is exactly what we wanted to show.

Since we have proved both both directions of our biconditional statement, we conclude that

A · x = 0⇐⇒ K · x = 0.
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