\qquad
\qquad

Exam 2, Version 1A
 Math 2B: Linear Algebra

What are the rules of this exam?

- PLEASE DO NOT TURN THIS PAGE UNTIL TOLD TO DO SO!
- It is a violation of the Foothill Academic Integrity Code to, in any way, assist another person in the completion of this exam. Please keep your own work covered up as much as possible during the exam so that others will not be tempted or distracted. Thank you for your cooperation.
- No notes (other than your note card), books, or classmates can be used as resources for this exam.
- Please turn off your cell phones or put your cell phones into airplane mode during this exam. Please place your cell phones inside your bag. No cell phones will be allowed on your desk.
- Close your bag and put it under your seat.

How long is this exam?

- This exam is scheduled for a 120 minute class period.
- Make sure you have 7 sheets of paper (14 pages front and back) including this cover page.
- There are a total of 24 separate questions (100 points) on this exam including:
- 5 True/False Questions (10 points)
- 15 Multiple Choice Questions (60 points)
- 3 Free-Response Questions (30 points)
- 1 Optional, Extra Credit Challenge Problem (10 points)

What can I use on this exam?

- You may use one note card that is no larger than 8.5 inches by 11 inches This note card must be handwritten. You may write on both sides of this note card. PLEASE SUBMIT YOUR NOTECARD WITH YOUR EXAM.
- You are allowed to use calculators for this exam. Examples of acceptable calculators include TI 83, TI 84, and TI 86 calculators. You are not allowed to use any calculator with a Computer Algebra System including TI 89 and TI NSpire. If you have a question, please ask your instructor about this.

How will I be graded on the Free-Response Questions?

- Read the directions carefully. Show all your work for full credit. In most cases, a correct answer with no supporting work will NOT receive full credit. What you write down and how you write it are the most important means of getting a good score on this exam. Neatness and organization are IMPORTANT!
- You will be graded on proper use of vector notation and matrix notation on this exam.
- You will be graded on proper use of theorems and definitions from in-class discussions and homework.

True/False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you've chosen your answer, mark the appropriate space on your Scantron form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T F Let $A \in \mathbb{R}^{9 \times 6}$ and $X \in \mathbb{R}^{6 \times 7}$. Set

$$
B=A \cdot X
$$

Then $B(:, 3)=A(3,:) \cdot X$
2. $\mathrm{T} \quad \mathrm{F} \quad$ For matrices in $\mathbb{R}^{4 \times 4}, D_{3}(6)-D_{3}(5)=\mathbf{e}_{3} \cdot \mathbf{e}_{3}^{T}$
3. T F Any square matrix with nonzero diagonal entries must be invertible.
4. T F Suppose we are given

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
3 \\
2 \\
-3
\end{array}\right]
$$

Then, there exists an $\mathbf{x} \in \mathbb{R}^{2}$ such that $\|A \cdot \mathbf{x}-\mathbf{b}\|_{2}=0$
5. T $\mathrm{F} \quad$ Let $n \in \mathbb{N}$. Let V be a vector space and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$. Suppose

$$
W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} .
$$

Then $\operatorname{dim}(W) \leq n$.

Multiple Choice (60 points: 4 points each) For the problems below, circle the correct response for each question. After you've chosen, mark your answer on your Scantron form.

For problems 6 and 7 below, consider the wireframe model for a begin polygon V defined by vertex matrix and edge table below.

$$
V=\left[\begin{array}{rrrr}
2 & -2 & -2 & 2 \\
2 & 2 & -2 & -2
\end{array}\right]
$$

Edge \#	Start Vertex	End Vertex
1	1	2
2	2	3
3	3	4
4	4	1

Let W be a wireframe model for an end polygon given by

$$
W=\left[\begin{array}{rrrr}
0 & -4 & 0 & 4 \\
2 & 2 & -2 & -2
\end{array}\right]
$$

Assume W formed by multiplying V by some matrix $E \in \mathbb{R}^{2 \times 2}$ with $W=E \cdot V$. Also, assume that the edge tables of V and W are identical. Under these assumptions, the wireframe model for both V and W are given below.

6. Choose the matrix E used to produce W in this situation:
A. $S_{21}(-2)$
B. $S_{12}(-2)$
C. $S_{21}(-1)$
D. $S_{12}(1)$
E. $S_{12}(-1)$
7. Find the length of edge 4 from the wireframe model for the end polygon $W=E \cdot V$ in the problem above.
A. 2
B. $\sqrt{20}$
C. 4
D. $4 \sqrt{2}$
E. 0
8. Let matrix $B \in \mathbb{R}^{4 \times 4}$ be given as follows:

$$
\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

In symbols, we can write

$$
B=S_{41}(-2) \cdot A \cdot D_{4}(3)
$$

Using this definition, we see that b_{44} is equal to which of the following:
A. $-6 a_{44}$
B. $-2 a_{14}+3 a_{44}$
C. $-6 a_{14}+3 a_{44}$
D. $3 a_{14}-6 a_{44}$
E. $3 a_{14}-2 a_{44}$

9 . Let $n \in \mathbb{N}$ with $n \geq 3$. Suppose that we define the matrix

$$
B=I_{n}+c_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{T}-c_{2} \mathbf{e}_{3} \mathbf{e}_{1}^{T}
$$

where $\mathbf{e}_{k}=I_{n}(:, k)$. Which of the following is equivalent to B^{-1} ?
A. $S_{21}\left(c_{1}\right) \cdot S_{31}\left(-c_{2}\right)$
B. $S_{31}\left(c_{2}\right)-S_{21}\left(c_{1}\right)$
C. $S_{31}\left(c_{2}\right) \cdot S_{21}\left(-c_{1}\right)$
D. $S_{21}\left(\frac{1}{c_{1}}\right) \cdot S_{31}\left(\frac{-1}{c_{2}}\right)$
E. $S_{12}\left(c_{1}\right) \cdot S_{13}\left(-c_{2}\right)$
10. Consider the following matrix equation

$$
\underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -5 & 1
\end{array}\right]}_{L_{3}} \cdot \underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]}_{L_{2}} \cdot \underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]}_{L_{1}} \cdot \underbrace{\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 3 & 1 \\
3 & 0 & 2 & 2 \\
1 & 4 & 0 & 1
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{rrrr}
1 & 1 & 2 & 2 \\
0 & -1 & -1 & -3 \\
0 & 0 & -1 & 5 \\
0 & 0 & 0 & -35
\end{array}\right]}_{U}
$$

Find the lower-triangular matrix $L \in \mathbb{R}^{4 \times 4}$ from the $L U$ factorization of the matrix A :
A. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 \\ 1 & -3 & 5 & 1\end{array}\right]$
B. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & -3 & 1 & 0 \\ -1 & 3 & -5 & 1\end{array}\right]$
C. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & -3 & 1 & 0 \\ -22 & 18 & -5 & 1\end{array}\right]$
D. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 9 & 3 & 1 & 0 \\ 40 & 12 & 5 & 1\end{array}\right]$
E. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 2 & -1 & -1 & 0 \\ 2 & -3 & 5 & -35\end{array}\right]$
11. Suppose that $A \in \mathbb{R}^{3 \times 3}$ with inverse given by

$$
A^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
0.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then, find $\operatorname{det}(A)$:
A. $\frac{1}{6}$
B. $-\frac{1}{6}$
C. -6
D. 6
E. $\frac{2}{3}$
12. Let $A \in \mathbb{R}^{n \times n}$ be given. Suppose that you know $\operatorname{dim}(\operatorname{Nul}(A)) \neq 0$. Which of the following must be true:
A. $\operatorname{det}(A) \neq 0$
B. There exists some $\mathbf{b} \in \mathbb{R}^{n}$ such that $\mathbf{b} \notin \operatorname{Col}(A)$
C. $\operatorname{dim}(\operatorname{Col}(A))>0$
D. $\operatorname{Col}(A)=\mathbb{R}^{n}$
E. $a_{i i}=0$ for at least one index i for $1 \leq i \leq n$
13. Consider the 3×3 matrices given by

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -2 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

As discussed in class, we can multiply the matrix A by a sequence of three elementary matrices E_{1}, E_{2}, E_{3} to produce the upper-triangular matrix $U \in \mathbb{R}^{3 \times 3}$ with

$$
E_{3} \cdot E_{2} \cdot E_{1} \cdot A=U
$$

Which of the following matrices is NOT one of the elementary matrices E_{i} we used to accomplish this transformation?
A. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -9 & 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1.5 & 1\end{array}\right]$
D. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1\end{array}\right]$

For Problems 14-15, we consider the following data set: A combustion-driven potato cannon is a small-scale projectile launcher used for physics demonstrations. In such a device, we can burn methanol to produce high pressures in the combustion chamber that forces a projectile out of the barrel of the cannon. Below is a partial data set that describes the pressure at different distances from the end of the combustion chamber that results from burning methanol.

Pressure Versus
Position (Methanol)

Position x in meters	Pressure $P(x)$ in kPA
0.0	0
0.5	51
1.0	30

Suppose we choose to fit this data using a 4th degree polynomial of the form

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

We can use this assumption to generate the linear-systems problem

$$
\underbrace{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 0.5 & 0.25 & 0.125 & 0.0625 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{c}
0 \\
51 \\
30
\end{array}\right]}_{\mathbf{b}}
$$

14. Which of the following does not give a basis for $\operatorname{Col}(A)$? Choose all that apply.
A. $\{A(:, 1), A(:, 2), A(:, 3)\}$
B. $\{A(:, 1), A(:, 4), A(:, 5)\}$
C. $\{A(:, 1), A(:, 2), A(:, 4)\}$
D. $\{A(:, 1), A(:, 2), A(:, 5)\}$
E. $\{A(:, 2), A(:, 3), A(:, 4)\}$
15. Let $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Which of the following is not a solution to the linear-systems problem given above?
A. $\left[\begin{array}{r}0 \\ 174 \\ -144 \\ 0 \\ 0\end{array}\right]+c_{2} \cdot\left[\begin{array}{r}0.00 \\ -0.75 \\ 1.75 \\ 0.00 \\ -1.00\end{array}\right]$
B. $\left[\begin{array}{r}0 \\ 174 \\ -144 \\ 0 \\ 0\end{array}\right]+c_{1} \cdot\left[\begin{array}{r}0.0 \\ -0.5 \\ 1.5 \\ -1.0 \\ 0.0\end{array}\right]$
C. $c_{1} \cdot\left[\begin{array}{r}0.0 \\ -0.5 \\ 1.5 \\ -1.0 \\ 0.0\end{array}\right]+c_{2} \cdot\left[\begin{array}{r}0.00 \\ -0.75 \\ 1.75 \\ 0.00 \\ -1.00\end{array}\right]$
D. $\left[\begin{array}{r}0 \\ 174 \\ -144 \\ 0 \\ 0\end{array}\right]+c_{2} \cdot\left[\begin{array}{r}0 \\ -2 \\ 6 \\ -4 \\ 0\end{array}\right]+c_{3} \cdot\left[\begin{array}{r}0 \\ 3 \\ -7 \\ 0 \\ 4\end{array}\right]$

For Problems 16, consider the following model for a 3-mass, 4 -spring chain. Note that positive positions and positive displacements are marked in the downward direction. Assume the acceleration due to earth's gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Also assume that the mass of each spring is zero and that these springs satisfy the ideal version of Hooke's law exactly.

16. Recall that the initial position vector \mathbf{x}_{0} and the mass vector \mathbf{m} store the positions, measured in meters, of each mass at equilibrium when $t=0$ and the mass measurements, measured in kg , respectively. Suppose we measure

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{l}
0.25 \\
0.50 \\
0.75
\end{array}\right] \quad \mathbf{m}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\left[\begin{array}{l}
0.100 \\
0.200 \\
0.100
\end{array}\right]
$$

Which of the following gives the vector $\mathbf{x}(T)=\left[\begin{array}{lll}x_{1}(T) & x_{2}(T) & x_{3}(T)\end{array}\right]^{T}$ as measured in meters, used to store the positions of each mass at equilibrium when when $t=T$? If necessary, please round your answers to the nearest 3 places after the decimal.
A. $\left[\begin{array}{l}0.196 \\ 0.392 \\ 0.196\end{array}\right]$
B. $\left[\begin{array}{l}0.446 \\ 0.892 \\ 0.946\end{array}\right]$
C. $\left[\begin{array}{l}0.020 \\ 0.400 \\ 0.200\end{array}\right]$
D. $\left[\begin{array}{l}0.270 \\ 0.540 \\ 0.770\end{array}\right]$
E. $\left[\begin{array}{l}0.054 \\ 0.108 \\ 0.554\end{array}\right]$
17. Let $B=A^{-1}$ where

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
-3 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right]
$$

Then, which of the following gives $(B(1,:))^{T}$?
A. A^{-1} does not exist
B. $\left[\begin{array}{lll}3 & 1 & 4\end{array}\right]$
C. $\left.\begin{array}{lll}3 & 4 & -5\end{array}\right]$
D. $\left[\begin{array}{r}3 \\ 4 \\ -5\end{array}\right]$
E. $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
18. Consider the 3×3 matrix A from the problem above. Suppose we use this matrix in the following linear-systems problem

$$
\left[\begin{array}{rrr}
3 & 1 & -2 \\
-3 & 1 & 0 \\
-6 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5 \\
5
\end{array}\right]
$$

If \mathbf{x} is the solution to this linear-system problem, then which of the following gives the value of

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right] ?
$$

A. -3
B. -2
C. -1
D. 0
E. 2

For Problems 19-20, we consider the following data set: As part of an effort to understand the effects of human activity on earth's climate, scientists study the changes in the average temperature around the globe. Below, we see a partial data set that presents global mean temperature deviations during the 1990's. The larger the deviations, the more likely it is that the climate is changing over time.

Global Average Temperature Deviations

Year	Global Average Temperature Deviations (in ${ }^{\circ} \mathrm{C}$)
1993	0.3400
1994	0.3500
1995	0.3800
1996	0.4100
1997	0.4400

We can model this partial data set using a quadratic function

$$
D(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

where $D(t)$ represents the global average temperature deviations t years after 1993 .
19. Choose the correct model for the residual vector $\mathbf{r}=A \cdot \mathbf{x}-\mathbf{b}$ associated with the least-squares problem.
A. $\underbrace{\left[\begin{array}{llr}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]}_{\mathbf{x}}-\underbrace{\left[\begin{array}{l}0.34 \\ 0.35 \\ 0.38 \\ 0.41 \\ 0.44\end{array}\right]}_{\mathbf{b}}$
B. $\underbrace{\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]}_{\mathbf{x}}-\underbrace{\left[\begin{array}{l}0.34 \\ 0.35 \\ 0.38 \\ 0.41 \\ 0.44\end{array}\right]}_{\mathbf{b}}$
C. $\underbrace{\left[\begin{array}{ll}1 & 1993 \\ 1 & 1994 \\ 1 & 1995 \\ 1 & 1996 \\ 1 & 1997\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]}_{\mathbf{x}}-\underbrace{\left[\begin{array}{l}0.34 \\ 0.35 \\ 0.38 \\ 0.41 \\ 0.44\end{array}\right]}_{\mathbf{b}}$
D. $\underbrace{\left[\begin{array}{rlr}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]}_{\mathbf{x}}-\underbrace{\left[\begin{array}{c}0.34 \\ 0.35 \\ 0.38 \\ 0.41 \\ 0.44\end{array}\right]}_{\mathbf{b}}$
E. $\underbrace{\left[\begin{array}{lll}1 & 1993 & 1993^{2} \\ 1 & 1994 & 1994^{2} \\ 1 & 1995 & 1995^{2} \\ 1 & 1996 & 1996^{2} \\ 1 & 1997 & 1997^{2}\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]}_{\mathbf{x}}-\underbrace{\left[\begin{array}{l}0.34 \\ 0.35 \\ 0.38 \\ 0.41 \\ 0.44\end{array}\right]}_{\mathbf{b}}$
20. Solve the least-square problem associated with this temperature data. Make a prediction for the global average temperature deviation in the year 2000 (where your prediction is in ${ }^{\circ} \mathrm{C}$ rounded to the nearest 2 decimal places):
A. 0.54
B. 0.53
C. 0.58
D. 0.51
E. 0.64

Free Response

10 21. Suppose $m, n, p \in \mathbb{N}$. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Define the product

$$
C=A \cdot B
$$

Prove that calculating $C \in \mathbb{R}^{m \times p}$ via matrix-matrix multiplication by rows is equivalent to finding the product $C \in \mathbb{R}^{m \times p}$ using matrix-matrix multiplication by columns.

10 22. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{Nul}\left(A^{T}\right)$ is a subspace of \mathbb{R}^{m}.

10 23. Let $A \in \mathbb{R}^{m \times n}$. Suppose $U=\operatorname{RREF}(A)$. Prove that $\operatorname{Nul}(A)=\operatorname{Nul}(U)$. To do so, verify each of the following
i. $\operatorname{Nul}(A) \subseteq \operatorname{Nul}(U)$
ii. $\operatorname{Nul}(U) \subseteq \operatorname{Nul}(A)$

Challenge Problem

24. (Optional, Extra Credit, Challenge Problem) Suppose that square matrix $A \in \mathbb{R}^{n \times n}$ is a strictly uppertriangular matrix. In other words, suppose that $a_{i k}=0$ for all $i \geq k$ where $1 \leq i, k \leq n$. Then prove that $A^{n}=0$.
