M2B: EXAM 2, V1A © Jeffrey A. Anderson ANSWER KEY

True / False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you've chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T @ Let A € R9%6 and X € R6*7. Set

Then B(:,3) = A(3,:) - X

2. @ F For matrices in R**4 D3(6) — D3(5) = e3 - e}

3. T @ Any square matrix with nonzero diagonal entries must be invertible.

4. T @ Suppose we are given

11 3
A=1|1 -1|, b=| 2
11 —3

Then, there exists an x € R? such that ||A-x — b|js =0

5. @ F Let n € N. Let V be a vector space and let vy, vg,...,v, € V. Suppose
W = Span{vy, va, ..., vy }.

Then dim(W) < n.



Multlple Choice (60 points: 4 points each) For the problems below, circle the correct response
for each question. After you’ve chosen, mark your answer on your Scantron form.

For problems 6 and 7 below, consider the wireframe model for a begin polygon V defined by vertex matrix
and edge table below.

Edge # | Start Vertex | End Vertex
2 -2 -2 2 1 1 2
2 2 -2 =2

W N

2 3
3 4
4 1

Let W be a wireframe model for an end polygon given by

0 4 0 4
W= [2 2 -2 =2
Assume W formed by multiplying V' by some matrix E € R?*2 with W = E - V. Also, assume that the
edge tables of V and W are identical. Under these assumptions, the wireframe model for both V" and W are
given below.
Begin Polygon: V End Polygon: W=E -V

X2 X

R SO R Y A Multiplication by
: : : Elementary Matrix E

6. Choose the matrix FE used to produce W in this situation:

A. So(~2) B. Si2(—2) C. Soy(—1) D. Si2(1) E. Sia(—1)

7. Find the length of edge 4 from the wireframe model for the end polygon W = E-V in the problem above.

A2 B. V20 C. 4 D. 42 E. 0
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8. Let matrix B € R*** be given as follows:

bir b2 biz bis 1 0 0 0| [an a2 a3z aus| |1
bor bay Doz bog| _ | O 1 0 Of faz a2 a3 a| |0
b1 b3z b3z b3y 0 0 1 Of [as1 a3z azz aszs| |O
by baz sz bay -2 0 0 1] |as1 as2 aa3 aaa] |O
In symbols, we can write
B = Su(~2)- A- Dy(3)
Using this definition, we see that by is equal to which of the following:
A. —6ays B. —2a14 + 3a44 C. —6ayg + 3ags D. 3a14 — 6a44

o o= o
o= o o
w o oo

E. 3a14 — 2@44

9. Let n € N with n > 3. Suppose that we define the matrix
B = In—&-clegef —Cgege{

where e, = I,,(:, k). Which of the following is equivalent to B~1?

A. 521(01) : 531(*02) B. 531(02) - 521(01)

C. S3i(c2) - Sa1(—c1)

b5 (L) 50 () b e Sul-e

C2
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10. Consider the following matrix equation

Ly

Lo

L3

Find the lower-triangular matrix L € R**# from the LU factorization of the matrix A:

o o O -

o O O

O O — 10

S = M m

— N ™M

0 0
-1 0
-1 -1
-3 5

1
1
E.2
2

11. Suppose that A € R3*3 with inverse given by

1 0 -1
-1
1

0 1
0 0

Then, find det(A) :
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12. Let A € R™*™ be given. Suppose that you know dim (Nul(4)) # 0. Which of the following must be true:

det(A4) #0

There exists some b € R” such that b ¢ Col(A)
dim (Col(A4)) > 0

Col(A) = R"

a;; = 0 for at least one index i for 1 <i<n

m o oW

13. Consider the 3 x 3 matrices given by

1 11 1 1 1
A=14 2 1 U=10 -2 -3
9 3 1 0 0 1

As discussed in class, we can multiply the matrix A by a sequence of three elementary matrices E1, Fo, E3
to produce the upper-triangular matrix U € R3*3 with

Es Fy-E-A=U.

Which of the following matrices is NOT one of the elementary matrices E; we used to accomplish this

transformation?
1 0 0 1 0 0 1 0 0 1 0 0
A.|-4 1 0 B 01 0 C. |0 1 0 D. |0 1 0
0 0 1 -9 0 1 0 —-15 1 0 -3 1
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For Problems 14 - 15, we consider the following data set: A combustion-driven potato cannon is a small-scale
projectile launcher used for physics demonstrations. In such a device, we can burn methanol to produce
high pressures in the combustion chamber that forces a projectile out of the barrel of the cannon. Below is
a partial data set that describes the pressure at different distances from the end of the combustion chamber
that results from burning methanol.

Pressure Versus
Position (Methanol)

Position # | Pressure P(x) e
in meters in kPA
0.0 0
0.5 51
1.
0 30 10if0.0)
1ol 01 02 03 04 05 06 0.7 08 09 10 1.1\2 *
-20
Suppose we choose to fit this data using a 4th degree polynomial of the form
P(z)=ao+ a1z + asx® + asz® + agzt
We can use this assumption to generate the linear-systems problem
ao
1 0 0 0 0 ax 0
1 05 025 0.125 0.0625| - [az| = |51
1 1 1 1 1 as 30
ay ——
A b
14. Which of the following does not give a basis for Col(A)? Choose all that apply.
A {A(1), A 2), A 3)} B. {A(;,1), A(:,4), A(:,5)} C. {A(;,1),A(:,2),A(:,4)}

D. {A(;,1),A(:,2), A(:,5)} E. {A(;,2),A(:,3),A(:,4)}

15. Let ¢1, 2, c3 € R. Which of the following is not a solution to the linear-systems problem given above?

0 0.00 0 0.0

174 —0.75 174 -0.5

A |-144| +co- | 175 B. |-144| +c1- | 1.5
0 0.00 0 -1.0

0 —1.00 0 0.0

0.0 0.00 0 0 0

-0.5 —0.75 174 -2 3

C. Ccy 1.5 + Co -+ 1.75 D. —144 | + Ccy - 6| + C3 - -7

-1.0 0.00 0 —4 0

0.0 —1.00 0 0 4
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For Problems 16, consider the following model for a 3-mass, 4-spring chain. Note that positive positions
and positive displacements are marked in the downward direction. Assume the acceleration due to
earth’s gravity is g = 9.8m/s?. Also assume that the mass of each spring is zero and that these springs
satisfy the ideal version of Hooke’s law exactly.

Spring Mass Chain at equilibrium  Spring Mass Chain at equilibrium with

NO external force (0 sec) force due to earth’s gravity (at T' sec)
105000000 KeRsing 000000000000 A s A
200000000000077525%00000000000% 2000000000005052229000000000000;

N
k1 =10—
m
ky
= z1(0)
Zl m
a 1
=
z1(T)
my
N
ko =5—
m
S i x2(0)
2 2
2| M2
=
=
z2(T)
N
k3 =5— M2
m
ES x3(0)
0
Z| ms k3
S
=1
z3(T)
N
ky=10— ms
m
+
T
k4+
0000000000 kav60sid 000000000000 000000000 e 0000000000

16. Recall that the initial position vector x¢ and the mass vector m store the positions, measured in meters,
of each mass at equilibrium when ¢ = 0 and the mass measurements, measured in kg, respectively.
Suppose we measure

xl(O) 0.25 mi 0.100
xo = |22(0)| = [0.50 m= |ma| = [0.200
23(0)]  [0.75 ms|  |0.100

Which of the following gives the vector x(T') = [z1(T) w2(T) x3(T )]T as measured in meters, used
to store the positions of each mass at equilibrium when when ¢t = T'7 If necessary, please round your
answers to the nearest 3 places after the decimal.

0.196 0.446 0.020 0.270 0.054
A. [0.392 B. |0.892 C. 10.400 D. ]0.540 E. 10.108
0.196 0.946 0.200 0.770 0.554
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17. Let B = A~! where

1 2 -1
A=1(-3 1 2
-2 2 1
T
Then, which of the following gives (B(l7 )) ?
3 3
A. A~! does not exist B. [3 1 4] C. [3 4 -5 D. | 4 E. |1
-5 4

18. Consider the 3 x 3 matrix A from the problem above. Suppose we use this matrix in the following
linear-systems problem

3 1 =2 |z 1
-3 1 O |z2| = |5
-6 0 1] |x3 5

If x is the solution to this linear-system problem, then which of the following gives the value of

-1
[1‘1 To .’Eg} —1(7?
1
A -3 B. -2 C. -1 D. 0 E. 2
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For Problems 19 - 20, we consider the following data set: As part of an effort to understand the effects
of human activity on earth’s climate, scientists study the changes in the average temperature around
the globe. Below, we see a partial data set that presents global mean temperature deviations during the
1990’s. The larger the deviations, the more likely it is that the climate is changing over time.

Global Average Temperature Deviations

Global Average
Temperature _ 0.44 1 g
Deviations (&)
Year (in °C) 9;;0_42 L
s °
1993 0.3400 2
' «© 04+
>
1994 0.3500 a
o 0.38 °
1995 0.3800 &
*,0.36 1
1996 0.4100 E °
F [ ]
1997 0.4400 0.34 | | | | | |
1992 1993 1994 1995 1996 1997 1998

Time (Years)
We can model this partial data set using a quadratic function

D(t) =ag + a1t + a2t2

where D(t) represents the global average temperature deviations ¢ years after 1993.

19. Choose the correct model for the residual vector r = A-x — b associated with the least-squares problem.

11 1 0.34 1 0 0.34 1 1993 0.34
1 2 4 ao 0.35 11 a 0.35 1 1994 " 0.35
A |1 3 9| - |a1| - 038 B. [1 2 -[a‘f]— 0.38 C. |1 1995 -[aﬂ— 0.38
1 4 16 as 0.41 1 3 0.41 1 1996 LM fo.41
1 5 25| ~~ |0.44 1 4 M 0.44 1 1997 X 0.44
—_——— x —— N—— ——— N——
A b A b A b

1 0 O 0.34 1 1993 19932 0.34

11 1 ao 0.35 1 1994 19942 ao 0.35

D. |1 2 4| - |a1|—|0.38 E. [1 1995 19952 ay| — |0.38

1 3 9 as 0.41 1 1996 19962 as 0.41

1 4 16 J ‘-\x/-’ ;).44 I 1 1997 19972 ‘Nxf-’ 0.44

A Y ) b

20. Solve the least-square problem associated with this temperature data. Make a prediction for the global
average temperature deviation in the year 2000 (where your prediction is in °C rounded to the nearest
2 decimal places):

A. 0.54 B. 0.53 C. 0.58 D. 0.51 E. 0.64
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Free Response

21. Suppose m,n,p € N. Let A € R™*™ and B € R"*P. Define the product
C=A-B.

Prove that calculating C' € R™*P via matrix-matrix multiplication by rows is equivalent to finding the
product C € R™*P using matrix-matrix multiplication by columns.

Solution: Let A € R™*™ and B € R™*P. In this proof, we will calculate matrix
C=A-B
using matrix-matrix multiplication by rows. On the other hand, we calculate
D=A-B
using matrix-matrix multiplication by columns. We will show that these two methods are identical

by demonstrating that c;; = d;; for all possible values of i,k. To begin, assume i,k € N with
1<i<mand1<k<p.

By Rows: Consider

C(i,) = A(i,:)- B= Y ai;B(j,?)
j=1

=a; [bn cee by e b1p]
+aiz [bar c bax oo bop)
+ ain [bnl e bnk e bnp]

Using this expansion, we conclude that

n
Cik = E aijbjk.
j=1
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Solution: By Columns: Consider

D(:,k) = A-B(:.k) =Y _bjrA(:))
j=1

a1 ail ail
=bip | a1 | +bop | a1 | +bni | @it

Am1 Gm1 Am1

Using this expansion, we conclude that

n
dir, = E ij bjk.
Jj=1

both forms of matrix-matrix multiplication are identical.

We have just proved that c¢;; = d;i for all possible values of i, k. Thus, C' = D and we conclude that
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(10 pts) Let A € R™*™. Prove that Nul (AT) is a subspace of R™

i i ./ ¢
Recall’ Nul AR =xf 56 RS A

We want To prove Nu{ (AT) e R”

1 S G 3ub SpC.CC.
T:D ae =0, Wt need +o Show
. De Nol (AT :

o™
Con sider Por 0¢ 1% p

AT B

|
|
>
A
>
—
\3
-,
o c
y»__,__——l

1y
" N 3
G
e |
D

= 6 e \Rh ___/
Thos D e Nol iAY) .
i1 Nul (A s closed undwr addihon’

uppose X, , Xa € Nul(4T). Consdes
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closed uadar  gcalor ~vedsr mo A

i Nel (A7) i

Suppose x € 1R and Xy € Nul AT) . Constdor

/\N‘~ (O( 'F)Z‘.

= ?) é Wl“_y

6 o Subspace of R™M.

"Thos Nol (A7) € R™




23. (10 pts) Let A € R™*™. Suppose U = RREF(A). Prove that Nul(A) = Nul(U). To do so, verify each
of the following

i. Nul(A) C Nul(U)
ii. Nul(U) C Nul(A)

o) i. Lol % € NullA) gnd suppoce TF'= REEF(A).
m xm
. - ... Fp €R
We Know Anere exizts 1nverhble mereies By , Et
3uch That g, -E-A=U
e, (5, s B
= 2 A= e BEETD
tohete = NTdd ‘h})k—
= % = (BE-A)X
- E (A~><3
= E~ U
¢
= O

|

e 7
= Nl (A) ¢ Nul ()
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Pc\')r“ — f
3 'I) €» ..
let x ¢ Nui(u‘) and |
n 4, RREE

E3L

C Ol\‘iilde( YU ~
b4 =

=
A-x =1
‘ sl &
ance  NoV(E) = f(—ﬂ

o Xe Nul(A)

=S Nul () € Nul(A)

Wi
, 1) and
) combmed, we N
d oV

Nul (A) = N ( TT) =



Challenge Problem

24. (Optional, Extra Credit, Challenge Problem) Suppose that square matrix A € R"*" is a strictly upper-
triangular matrix. In other words, suppose that a;, = 0 for all i > k where 1 < 4,k < n. Then prove

that A™ = 0.

n> \ \ \
Suppose A ¢ R o s sty oppr- 1 anguied w 't
Qix =0 PN ol iRy
~ 'C
We waad To show AN =0 . TTo do so, we Notic
— )]
D e iR’ P

- |3I)
T “this end ) sUppoOse X e IK

"
X
F
AL
)

Con sicler An ’ ;<

=)

Seﬂ’\nﬂ 9,: A : §

1
|
(@)
2
D
3
5
o
- |
=
(amnal
X

Math 2B: Exam 2, V1A @© Jeffrey A. Anderson



Then 0.550Me

Co nsicler

Then

Y n
o
n
- 2 Qox,e )¢
L= 1
N
/.
B . O, o Y G .
= 1S N-K+)

M
C




