
M2B: EXAM 1, V1A c© Jeffrey A. Anderson ANSWER KEY

True/False (10 points: 2 points each) For the problems below, circle T if the answer is true and circle
F is the answer is false. After you’ve chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.

1. T F Let A ∈ Rm×n and x ∈ Rn. Then the matrix-vector product A ·x represents a linear
combination of the rows of A with scalar multiples defined by the entries of x.

2. T F All functions are relations.

3. T F Any set of vectors that contains the zero vector must be linearly dependent.

4. T F Any two matrices that are conformable for matrix multiplication must have the same
number of rows.

5. T F Since all entries of the vectors

0
0
0

 and

[
0
0

]
are zero, these vectors are equal.



Multiple Choice (60 points: 4 points each) For the problems below, circle the correct response
for each question. After you’ve chosen, mark your answer on your Scantron form.

6. Define vectors

x =


t
−4

2
t

 , y =


−t
t
5
1


Find all values of scalar t so that the inner product x · y = 0

A. t = −2 B. t = 5 and t = −2 C. t = 5 and t = 2 D. t = −5 and t = 2 E. t = 5

7. Suppose that ek ∈ R3 is the 3× 1 elementary basis vector with ek = I3(:, k) for k = 1, 2, 3. Let

A = −2 · e3 · eT1 + 4 · e2 · eT2 + 3 · e3 · eT3 − e1 · eT2

Then, which of the following gives A(:, 2) ·A(1, :)?

A.

0 −1 0
0 4 0
0 0 0

 B. 4 C. 1 D.

0 1 0
0 −4 0
0 0 0

 E.

0 1 0
0 4 0
0 0 0


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8. Let the following matrix A ∈ R8×5 be the incidence matrix for a directed graph:

A =



1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
−1 0 0 1 0
−1 0 0 0 1

0 1 0 0 −1
0 0 1 0 −1
0 0 0 −1 1


Then, this is the incidence matrix for which of the following directed graphs:

A.

N1 N2

N3N4

N5

e1

e2

e6

e7

e3

e4

e5

e8

B.

N1 N2

N3N4

N5

e1

e2

e6

e7

e3

e4

e5

e8

C.

N1 N2

N3N4

N5

e1

e2

e6

e7

e3

e4

e5

e8

D.

N1 N2

N3N4

N5

e1

e2

e6

e7

e3

e4

e5

e8

9. Suppose that we define ellipse E =

{
(x, y) :

x2

25
+

y2

9
= 1

}
. Find the range, Rng(E), of this relation.

A. (−5, 5) B. [−5, 5] C. [−3, 3] D. (−3, 3) E. R
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Consider the following ideal circuit diagram. Use this figure to answer questions 10, 11, and 12 below.

+
−vv iv

•
u1

•u5

r1

+ vr1 −
ir1

•
u2

r2

+

vr2

−
ir2

•
u4

r3

+ vr3 −
ir3

•
u3

r4

+

vr4

−
ir4

r5

− vr5 +

ir5

10. Which of the following matrix-vector products is used to calculate the voltage across each circuit element.

A.


vr1
vr2
vr3
vr4
vr5
vv

 =


1 −1 0 0 0
0 1 0 −1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
1 0 0 0 −1

 ·

u1

u2

u3

u4

u5

 B.


vr1
vr2
vr3
vr4
vr5
vv

 =


−1 1 0 0 0

0 −1 0 1 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
−1 0 0 0 1

 ·

u1

u2

u3

u4

u5



C.


u1

u2

u3

u4

u5

 =


1 0 0 0 0 1
−1 1 1 0 0 0

0 0 −1 1 0 0
0 −1 0 −1 1 0
0 0 0 0 −1 −1

 ·

vr1
vr2
vr3
vr4
vr5
vv

 D.


vr1
vr2
vr3
vr4
vr5
vv

 =



1
r1

0 0 0 0 0

0 1
r2

0 0 0 0

0 0 1
r3

0 0 0

0 0 0 1
r4

0 0

0 0 0 0 1
r5

0

0 0 0 0 0 1

 ·

ir1
ir2
ir3
ir4
ir5
vv



11. Which matrix-vector multiplication problems gives Kirchoff’s Current Laws for the entire circuit?

A.


1 0 0 0 0 1
−1 1 1 0 0 0

0 0 −1 1 0 0
0 −1 0 −1 1 0
0 0 0 0 −1 −1

 ·

ir1
ir2
ir3
ir4
ir5
iv

 =


0
0
0
0
0

 B.


1 0 0 0 0 1
−1 1 1 0 0 0

0 0 −1 1 0 0
0 −1 0 −1 1 0
0 0 0 0 −1 −1

 ·

vr1
vr2
vr3
vr4
vr5
vv

 =


0
0
0
0
0



C.


1 0 0 0 0 −1
1 1 1 0 0 0
0 0 1 −1 0 0
0 1 0 1 −1 0
0 0 0 0 1 1

 ·

ir1
ir2
ir3
ir4
ir5
iv

 =


0
0
0
0
0

 D.


1 −1 0 0 0
0 1 0 −1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
1 0 0 0 −1

 ·


0
0
0
0
0

 =


ir1
ir2
ir3
ir4
ir5
iv


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12. Which of the following matrix-vector multiplication problems can be used to state Ohm’s Law for each
resistor in the circuit?

A.


vr1
vr2
vr3
vr4
vr5

 =


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5

 ·

u1

u2

u3

u4

u5

 B.


ir1
ir2
ir3
ir4
ir5

 =


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5

 ·

vr1
vr2
vr3
vr4
vr5



C.


vr1
vr2
vr3
vr4
vr5

 =


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5

 ·

ir1
ir2
ir3
ir4
ir5

 D.


vr1
vr2
vr3
vr4
vr5

 =


1
r1

0 0 0 0

0 1
r2

0 0 0

0 0 1
r3

0 0

0 0 0 1
r4

0

0 0 0 0 1
r5

 ·

ir1
ir2
ir3
ir4
ir5



13. Let 10110110 be an 8−bit binary integer. What is the decimal representation of this number?

A. 109 B. 364 C. 218 D. 80880880 E. 182

14. Define three vectors in R4 as

a1 =


1
1
1
1

 , a2 =


0
5

10
15

 , a3 =


0

25
100
225

 , a4 =


5

−45
−45

5


We can confirm that a4 = 5 · a1 − 15 · a2 + 1 · a3. Choose the vector x ∈ R4 such that[

a1 a2 a3 a4
]
· x = 0

A.


45
−1

1
−1

 B.


5

−15
1
1

 C.


−5
15
−1
−1

 D.


5

−15
1
−1

 E. The product will never be zero
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15. Let A ∈ R8×4, B ∈ R4×7, and C ∈ R7×5. Let the matrix D be formed by the product

D = (A ·B · C)
T

What are the dimensions of the matrix [D(:, 4)]
T

?

A. 8× 5 B. 5× 8 C. 1× 5 D. 1× 8 E. 5× 1

16. Consider the set of vectors given by

a1 =


2
0
2
0

 , a2 =


−1

0
−1

0

 , a3 =


0
1
0
1

 ,

Which of the following vectors sets is equivalent to the span of these three vectors?

A. R4 B.



x1

x1

x1

x1

 : x1 ∈ R

 C.



x1

x1

x2

x2

 : xi ∈ R for i = 1, 2



. D.




2
0
2
0

 ,


−1

0
−1

0

 ,


1
0
1
0

 ,


0
1
0
1

 ,


2
1
2
1

 ,


−1

1
−1

1

 ,


1
1
1
1


 E.



x1

x2

x1

x2

 : xi ∈ R for i = 1, 2



17. Define the matrix B ∈ R3×3 as a sum of elementary matrices given by

B = D1(2) + S21(2) + S31(3)− S13(−4).

Which of the following matrices is equivalent to B?

A.

3 0 4
2 2 0
3 0 2

 B.

2 0 4
2 1 0
3 0 1

 C.

2 0 −4
2 1 0
3 0 1

 D.

4 0 4
2 2 0
3 0 2

 E.

3 0 −4
2 2 0
3 0 2


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For problems 17 and 18, consider the following 4-mass, 5-spring chain presented below. Notice that
positive positions and positive displacements are marked in the downward direction. Assume the accel-
eration due to earth’s gravity is g = 9.8m/s2. Also assume that the mass of each spring is zero and that
these springs satisfy Hooke’s law exactly.

m1

M
as

s
1

m2

M
as

s
2

m3

M
as

s
3

m4

M
as

s
4

−
x

+
k1 = 40N

m

k2 = 10N
m

k3 = 10N
m

k4 = 10N
m

k5 = 40N
m

Spring Mass Chain at equilibrium

NO external force (0 sec)

x1(0)

x2(0)

x3(0)

x4(0)

m1

m2

m3

m4

k1

k2

k3

k4

k5

Spring Mass Chain at equilibrium with

force due to earth’s gravity (at T sec)

−
u

+

x1(T )

x2(T )

x3(T )

x4(T )

18. Recall that the initial position vector x0 and the final position vector x(T ) store the positions, measured
in meters, of each mass at equilibrium when t = 0 and when t = T respectively. Suppose we measure

x0 =


x1(0)
x2(0)
x3(0)
x4(0)

 =


0.200
0.400
0.600
0.800

 x(T ) =


x1(T )
x2(T )
x3(T )
x4(T )

 =


0.249
0.498
0.698
0.849


where each entry is given in meters. Using this information, which of the following vectors gives the
force vector fs that encodes the forces stored in each spring in this system?

A.


1.960
0.490
0.000
−0.490
−1.960

 B.


1.960
0.980
0.980
1.960

 C.


1.470
0.490
0.000
0.490
1.470

 D.


1.470
0.490
0.490
1.470

 E.


0.049
0.049
0.000
−0.049
−0.049


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19. Under the same assumptions as the problem above, which of the following gives the mass vector

m =
[
m1 m2 m3 m4

]T
measured in kg, used to produce this position data?

A.


0.200
0.100
0.100
0.200

 B.


1.470
0.490
0.490
1.470

 C.


0.250
0.200
0.200
0.250

 D.


2.450
1.960
1.960
2.450

 E.


0.150
0.050
0.050
0.150



20. Consider the experiment below. Suppose we hang three masses on the same spring and record the posi-
tion data for that spring. Assume the spring constant is known to be k = 5 N/m. Assume also that the
acceleration due to earth’s gravity is g = 9.8N/kg. Finally, suppose that the mass of the spring is zero
and that this spring satisfy Hooke’s law exactly.

m2

m3

m4

−
x

+

0 = x1

x2

x3

x4

In order to model the relationship between the displacement of the movable end of the spring and the
internal force stored in the spring, we introduce two 4× 1 vectors given by

m =


m1

m2

m3

m4

 =


0.0
0.1
0.2
0.3

 , x =


x1

x2

x3

x4


Each entry mi is measured in kg. The entries of the position vector xi, measured in meters. We know
x1 = 0m and the other entries x2, x3, x4 ∈ R can be calculated from our knowledge of vector m and
Hooke’s Law. Which of the following gives the vector x in this situation?

A.


0.0
0.1
0.2
0.3

 B.


0.000
0.196
0.392
0.588

 C.


0.00
0.02
0.04
0.06

 D.


0.0
0.5
1.0
1.5

 E.


0.0
4.9
9.8
14.7


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Free Response

21.10 Suppose you are enrolled in a math course in which your final percent score is calculated as a weighted
average. Below is a table that describes the important details of this class’s grading scheme:

Grade Category Total Points Percentage
on Syllabus Available Weight

Homework 200 10%
Projects 500 15%
Exam 1 100 20%
Exam 2 100 20%
Final Exam 100 35%

Suppose the teacher of this class does NOT have a grade replacement policy for your exam scores. With
this in mind, respond to the following three questions.

A. Set up a vector model g ∈ R5 that encodes all aspects of your course grade. Define each entry of g
and describe your choices.

Solution: To create this vector model, we will define a 5× 1 vector given by

g =



h

200

p

500

e1
100

e2
100

e3
100


In this case, we will set

h = total points earned in homework grade category

p = total points earned in project grade category

e1 = total points earned on exam 1

e2 = total points earned on exam 2

e3 = total points earned on the final exam

This grade vector stores the percent score earned in each grade category for this course.
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B. Demonstrate how to use the inner-product operation to calculate your final grade in this class.

Solution: In order to calculate the final percent score in this class, we consider the following
inner product:

g · c =



h
200

p
500

e1
100

e2
100

e3
100


·



0.10

0.15

0.20

0.20

0.35


=

h

200
· 0.10 +

p

500
· 0.15 +

e1
100
· 0.20 +

e2
100
· 0.20 +

e3
100
· 0.35

C. Suppose on the night before the final, you know you’ve earned the following scores:

Grade Category Points You
on Syllabus Earned

Homework 186
Projects 420
Exam 1 82
Exam 2 90

Assuming you want to get above a 85% in this class, determine the minimum percent score you will
need to earn on the final exam to achieve your goal. Show your work.

Solution: In this case, we are given

h = 186, p = 420, e1 = 82, e2 = 90

and we want to find e3 such that In order to calculate the final percent score in this class, we consider
the following inner product:(

186

200
· 0.10 +

420

500
· 0.15 +

82

100
· 0.20 +

90

100
· 0.20 +

e3
100
· 0.35

)
≥ 0.85.

We can isolate e3 in this inequality to find that

e3 ≥ 82.

To earn a minimum of 85% in this class, we need to earn a minimum of 82 points on the final exam.
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22.10 Describe, in detail, each of the following problems. For each problem, your should:

i. Identify the problem statement

ii. Identify the given and unknown quantities (explicitly identify relevant dimensions)

iii. Identify the function description of this problem (explicitly discuss domain, codomain and range)

iv. Describe how each problem is similar to and different from the other problem.

A. The Matrix-Vector Multiplication Problem

Solution: The matrix-vector multiplication problem is as follows:

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, calculate unknown vector b ∈ Rm

such that

Ax = b

The matrix-vector multiplication is a “forward problem.” In particular, let’s define the function

f : Rn −→ Rm, f(x) = Ax =

n∑
k=1

xk A(:, k)

In this case, we see:

– the domain of f is Rn

– the codomain f is Rm.

– the range of f is Span{A(:, k)}nk=1

Matrix-vector multiplication is a forward problem because we start with the function descrip-
tion (defined by matrix A) and we are given one specific input value x in the domain. From
this information, we are asked to find the corresponding output value b in the range of func-
tion f(x). When solving the matrix-vector multiplication problem, we map from the domain
forward into the range. Hence, we call this a forward problem.

The matrix-vector multiplication problem is intimately connected with the linear system prob-
lem. Matrix-vector multiplication is the forward problem while the linear systems problem
represents the backward problem (also known as inverse problem). As discussed below, when
solving linear-systems problems, we start with a b ∈ Rng(f) and produce all x ∈ Dom(f) such
that A(x) = b

Remarks (for students who want to earn above a 90%): In addition to the comments above,
here are some other remarks about this problem

– For a matrix-vector multiplication problem b = Ax with Am×n and x ∈ Rn, solving this
problem requires a total of m · (2n− 1) operations between scalars.

– The solution to a matrix vector multiplication is unique. Each output vector b is given
as a linear combination of the columns of A with scalar weights defined by the coefficient
entries of x.
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B. The Square Linear-Systems Problem

Solution: The linear-systems multiplication problem is as follows:

Given a matrix A ∈ Rn×n and a vector b ∈ Rn, find all unknown vectors x ∈ Rn

such that

A · x = b

Just like the matrix-vector multiplication problem, we can describe the linear-systems using
the function

f : Rn −→ Rn, f(x) = A · x =

n∑
k=1

xk A(:, k)

In this case, we see:

– the domain of f is Rn

– the codomain f is Rn.

– the range of f is Span{A(:, k)}nk=1

The linear-systems problem is a backward problem because we start with the function descrip-
tion (defined by matrix A) and we are given one specific output value b in the range of f(x).
From this information, we are asked to find all possible input values x in the domain of our
function such that

f(x) = b.

When solving the linear-systems problem, we begin in the range and work our way backwards
to the domain. Hence, we call this a backward problem.

Remarks (for students who want to earn above a 90%): In addition to the comments above,
here are some other remarks about this problem

– The solution to a linear-systems problem may not exist. If it does exist, it may not
be unique. A great analogy comes from solving backward problems for the nonlinear
function f(x) = x2. Let’s look at three backward problems:

A. No solutions: f(x) = x2 = −4

B. Unique solution: f(x) = x2 = 0

B. Multiple solutions: f(x) = x2 = 4

Although the theory behind solving linear systems is much different than the theory for solving
quadratic equations, analogies about the existence and uniqueness of solutions abound. Linear
systems problems may have:

A. No Solution: b /∈ Rng(f) = Span{A(:, k)}nk=1 (known as least-squares problem)

B. Unique solution: b ∈ Rng(f) = Span{A(:, k)}nk=1 and A has linearly independent columns

C. Non-unique (multiple) solutions: b ∈ Rng(f) and A has linearly dependent columns
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23.10 Mass-spring problem

m1

M
as

s
1

m2

M
as

s
2

m3

M
as

s
3

m4

M
as

s
4

m5

M
as

s
5

−
x

+
k1

k2

k3

k4

k5

k6

Spring Mass Chain at equilibrium

NO external force (0 sec)

x1(0)

x2(0)

x3(0)

x4(0)

x5(0)

m1

m2

m3

m4

m5

k1

k2

k3

k4

k5

k6

Spring Mass Chain at equilibrium with

force due to earth’s gravity (at T sec)

−
u

+

x1(T )

x2(T )

x3(T )

x4(T )

x5(T )

A. Generate vector models (using appropriate matrices and vectors) to define

x0,x(T ), and u

where these vectors represent the initial position vector, the final position vector, and the displace-
ment vector, respectively (as discussed in class and in our lesson notes).

Solution: Recall from our in-class discussion, we have

x0 =


x1(0)
x2(0)
x3(0)
x4(0)
x5(0)

 , x(T ) =


x1(T )
x2(T )
x3(T )
x4(T )
x5(T )

 , u =


u1

u2

u3

u4

u5

 = x(T )− x0 =


x1(T )− x1(0)
x2(T )− x2(0)
x3(T )− x3(0)
x4(T )− x4(0)
x5(T )− x5(0)

 .
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B. Show how to calculate the elongation vector e as a matrix-vector product

e = Au

Write the entry-by-entry definition of matrix A and explain how you derived the equation for each
coefficient ei in this vector. Your answer should include specific references to the diagram of the
5-mass, 6-spring chain above.

Solution: The elongation vector e is a 6× 1 vector with entry ei representing the elongation
of spring i. We can find the elongation of each spring by considering each mass separately. We
will consider the first mass, the inner masses (masses 2, 3, and 4) and mass 5 separately. To
this end, consider the diagrams:

m1

m1

u1(t)

mi

mi+1

ui(t)

mi

mi+1

ui+1(t)

m5

m5

u5(t)

Using these diagrams, we see that our desired elongation vector is given by

e =


e1
e2
e3
e4
e5
e6

 =


u1

u2 − u1

u3 − u2

u4 − u3

u5 − u4

−u5

 = u1


1
−1

0
0
0
0

+ u2


0
1
−1

0
0
0

+ u3


0
0
1
−1

0
0

+ u4


0
0
0
1
−1

0

+ u5


0
0
0
0
1
−1


We can write this linear combination as a matrix-vector product as following

e =


e1
e2
e3
e4
e5

 =


1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1




u1

u2

u3

u4

u5

 = Au

where u is the 5×1 displacement vector from part (A) above. In this case, the matrix A ∈ R6×5

is given by

A =


1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1


We write

e(t) = Au(t) (1)
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C. Show how to calculate the spring force vector fs as a matrix-vector product

fs = Ce

Write the entry-by-entry definition of matrix C and discuss how Hooke’s law is used to create the
vector of forces for each spring.

Solution: Recall that Hooke’s law states that the the force stored inside a spring is directly
proportional to the elongation of the spring. In other words, for a spring with spring constant
ki, Hooke’s law states that

fsi = kiei

Thus, we can create a force vector that stores the forces in each of the five springs in our system
due to the elongations discussed in part (B) above. To this end, we see

fs =


fs1
fs2
fs3
fs4
fs5
fs6

 =


k1 e1
k2 e2
k3 e3
k4 e4
k5 e5
k6 e6

 = e1


k1
0
0
0
0
0

+ e2


0
k2
0
0
0
0

+ e3


0
0
k3
0
0
0

+ e4


0
0
0
k4
0
0

+ e5


0
0
0
0
k5
0

+ e6


0
0
0
0
0
k6


Again, we can write the force vector fs as the matrix-vector product

fs =


fs1
fs2
fs3
fs4
fs5
fs6

 =


k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6




e1
e2
e3
e4
e5
e6

 = Ce

where e is our elongation vector from above. The diagonal matrix C ∈ R6×6 is defined as

C =


k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6


We write

fs(t) = Ce(t) (2)
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D. Create “free-body” diagrams that show all forces acting on each mass mi. Use these diagrams to
derive the vector

y = −AT fs

of internal forces. Also, show how to combine your equation for y with equations from parts B and
C to form the stiffness matrix K. Note, you do not have to find the entry-by-entry definition of K.

Solution:

We now introduce the vector y(t) to store the difference between the forces between the springs
attached to each mass. To find the entries of y(t), consider the free body diagrams for mass i,
for i = 1, ..., 5.

mi

M
as

s
i

fsi

fsi+1 fei

When writing the individual entries of y(t) we will assume that positive forces result in positive
displacements. Since we’ve oriented positive displacement in the downward direction, we also
orient positive force in the downward direction.

y(t) =


y1(t)
y2(t)
y3(t)
y4(t)
y5(t)

 =


fs2(t)− fs1(t)
fs3(t)− fs2(t)
fs4(t)− fs3(t)
fs5(t)− fs4(t)
fs6(t)− fs5(t)

 = −


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1




fs1(t)
fs2(t)
fs3(t)
fs4(t)
fs5(t)
fs6(t)


We transform this into a matrix-vector product

y(t) = −AT fs(t) (3)

where fs ∈ R6 is the force vector from part (C) above. We see AT is the transpose of the matrix
A from part (A) above.
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Solution: In this problem, we will using equations (1), (2), and (3) to create stiffness matrix
K. To this end, note

y(t) = −AT fs(t) by equation (3)

= −ATCe(t) by equation (2)

= −ATCAu(t) by equation (1)

= −Ku(t)

If we let K = ATCA, we can then write

y(t) = −Ku(t) (4)

We can form our stiffness matrix K explicitly using matrix-matrix multiplication with

K =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1




k1 0 0 0 0 0
0 k2 0 0 0 0
0 0 k3 0 0 0
0 0 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 0 k6




1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1



=


k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0

0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5
0 0 0 −k5 k5 + k6


This is a tridiagonal, symmetric matrix.
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E. Use Newton’s second law to derive the matrix equation

M ü + Ku = fe

where fe represents the vector of external forces on each mass. Show the entry-by-entry definition
of the mass matrix M .

Solution: From Newton’s second law, we know that

Net Force = Mass × Acceleration

We can apply this law to each mass individually to create a differential equation that describes our
system, given by

ΣF =


ΣF1

ΣF2

ΣF3

ΣF4

 =


m1 ü1(t)
m2 ü2(t)
m3 ü3(t)
m4 ü4(t)

 =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5



ü1(t)
ü2(t)
ü3(t)
ü4(t)
ü5(t)


where ΣFi represents the net force on mass i and üi(t) =

d2

dt2

[
ui(t)

]
for i ∈ {1, 2, 3, 4, 5}. We write

the matrix-vector multiplication

ΣF = M ü(t) where M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 (5)

Further, since all forces are assumed to be positive in the downward direction we see
ΣF1

ΣF2

ΣF3

ΣF4

ΣF5

 =


fe1(t) + fs2(t)− fs1(t)
fe2(t) + fs3(t)− fs2(t)
fe3(t) + fs4(t)− fs3(t)
fe4(t) + fs5(t)− fs4(t)
fe5(t) + fs6(t)− fs5(t)

 =


fe1(t)
fe2(t)
fe3(t)
fe4(t)
fe5(t)

+


y1(t)
y2(t)
y3(t)
y4(t)
y5(t)


Thus, we can write

ΣF = fe(t) + y(t) (6)
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Solution: By combing equations (4), (5), and (6), we see

M ü(t) = fe(t) + y(t)

=⇒ M ü(t) = fe(t) +−Ku(t)

By moving −K onto the other side of the equation, we have

M ü(t) + Ku(t) = fe(t) (7)

Since we have assume that we study the system at equilibrium for t = T , we know ü(T ) = 0 and
we have

K u(T ) = fe(T )

Remark (for students who want to earn above a 100%):

• In this derivation, we’ve used a very general approach to allow t ∈ (0, T ]. Only at the very end
of our work, did we substitute the value of t = T to represent the case that our masses have
settled down to equilibrium. As we will see, this general approach will come in very useful
during our discussion of the eigenvalue-eigenvector problem.

• In fact, we have derived a coupled ordinary differential equation in the work above. For those
of you that have taken (or will take) Math 2A at Foothill, you may notice that equation (7) is a
vector version of the 2nd order differential equation for a harmonic oscillator with no damping
and general forcing function.
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Challenge Problem

24. (Optional, Extra Credit, Challenge Problem)

Let x ∈ Rn be a column vector. Recall that we defined the 2-norm of x to be

‖x‖2 =

(
n∑

i=1

x2
i

)1/2

This is one example of a much larger class of vector norms, known as p−norms. To create a p−norm,
we choose a real number p ≥ 1 and set

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

Using this definition, we can set p = ∞ and define the ∞−norm (read “infinity norm”), using the
following definition

‖x‖∞ = max
1≤i≤n

|xi|

Prove lim
p→∞

‖x‖p = ‖x‖∞

Solution: Let n ∈ N and suppose p ∈ R with p ≥ 1. Let x ∈ Rn. We begin our proof by establishing
lower and upper bounds on ‖x‖p in terms of ‖x‖∞. These inequalities are given as follows:

• Lower bound: ‖x‖∞ ≤ ‖x‖p

• Upper bound: ‖x‖p ≤ p
√
n · ‖x‖∞

After we establish these inequalities, we will take our limit as p→∞ and use the sandwich theorem
to conclude our desired result.

Lower bound: Let’s being by establishing the lower bound. To this end, let

j = arg max
1≤i≤n

{|xi|}

Based on the definition of the p-norm, we know

n∑
i=1

|xi|p = |xj |p +

n∑
i=0
i 6=j

|xi|p = ‖x‖p∞ +

n∑
i=0
i 6=j

|xi|p

Since |xi| ≥ 0 for all i = 1, 2, ..., n, we know that +
n∑

i=0
i 6=j

|xi|p ≥ 0. We immediately conclude

‖x‖p∞ ≤ ‖x‖pp

Taking the square root of both sides of this produces the desired lower-bound inequality.

Upper bound: We move onto our desired upper bound. Again, we start with the definition of
the p−norm

‖x‖pp =

n∑
i=0

|xi|p ≤
n∑

i=0

(
max
1≤j≤n

|xj |
)p

=

n∑
i=0

‖x‖p∞ = n · ‖x‖p∞
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Taking the square root of both sides produces the desired upper-bound inequality.

Limiting process: With both of these inequalities in hand, we have the following

‖x‖∞ ≤ ‖x‖p ≤ p
√
n · ‖x‖∞

Taking the limit as p→∞ of this chain inequality produces the bound

‖x‖∞ ≤ lim
p→∞

‖x‖p ≤ ‖x‖∞

With this we conclude that ‖x‖p = ‖x‖∞
Important lemmas: The above analysis relies on two important lemmas:

A. If 0 ≤ a ≤ b, then 0 ≤ p
√
a ≤ p√

b for any real p ≥ 1.

Proof. To prove this lemma, we will revert back to calculus. Consider a real number p ≥ 1. Define
the function

f(x) = x1/p

for x > 0. If we can show that f ′(x) > 0, we conclude that f(x) is increasing on the interval (0,∞).
To this end, recall

1

p
· x(1/p−1)

Since x > 0, we know x(1/p−1) > 0 and we conclude that f(x) is increasing.

B. If n ∈ N, then lim
p→∞

p
√
n = 1

Proof. Suppose L = lim
p→∞

p
√
n ≥ 0. Then, taking the logarithm of each side, we see

log(L) = log

(
lim
p→∞

p
√
n

)
= lim

p→∞
log
(

p
√
n
)

Since p
√
n = n1/p, we can use the power rule of logarithms to conclude

log(L) = lim
p→∞

1

p
· log(n) = log(n) · lim

p→∞

1

p
= 0.

Hence, we conclude that

10log(L) = 100

which proves L = 1.
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