\qquad

Math 1D: Lesson 4 Suggested Problems

Theoretic Problems: Discussed in-class

1. Let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function on a polar rectangle

$$
D=\{(r, \theta): a \leq r \leq b \text { and } \alpha \leq \theta \leq \beta\}
$$

where $z=f(r, \theta)$ is given in polar coordinates.
A. Explain how to set up the uniform discretization (a regular partition) of the polar rectangle D and how to enumerate subregions from $k=1,2, \ldots, n$.
B. Explain how to choose a sample point $\left(x_{k}^{*}, y_{k}^{*}\right)$ from the k th subregion of the partition using the midpoint rule.
C. Explain how to translate the Riemann sum

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
$$

into the integral by taking a limit with respect to Δ where Δ is the maximum value of Δr and $\Delta \theta$.
D. Derive the formula for the area of the k th sector of our partition as $\Delta A_{k}=r_{k}^{*} \cdot \Delta r \cdot \Delta \theta$
E. Using parts A - D above, explain why the differential form $d A$ used to measure "sizes" of points encoded in polar coordinates has a factor of r in it where $d A=r \cdot d r \cdot d \theta$
F. Now, explain why we define of the double integral of our function f on the polar rectangle as:

$$
\begin{aligned}
\iint_{D} f(r, \theta) d A & =\int_{\alpha}^{\beta} A(\theta) d \theta \quad \text { where } A(\theta)=\int_{a}^{b} f(r, \theta) \cdot r d r \\
& =\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) \cdot r d r d \theta
\end{aligned}
$$

G. Interpret the function $A(\theta)$ as the area under a curve created by intersecting the surface $f(r, \theta)$ with the appropriate plane.
H. Explain why $A(\theta)$ is a function of θ
I. Explain why the integral that defines $A(\theta)$ is taken with respect to variable r.

Problems Solved in Jeff's Handwritten Notes

3. Example 13.3.1 p. 986
4. Example 13.3.3 p. 987
5. Example 13.3.5 p. 990

Suggested Problems: Answers in Back of Book

3. Example 13.3.2 p. 986-987
4. Example 13.3.4 parts a and b on p. 988-989
5. Exercise 13.3 .31 p. 992
6. Exercise 13.3.55 p. 993

Optional Challenge Problems

3. Exercise 13.3 .71 p. 994
