Lesson 4: Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 13.3: Double Integrals in Polar Coordinates, p. 984-994
Theorem 13.3. p. 986 Double Integrals over Polar Rectangular Regions

Let $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function (where the domain is written in polar coordinates) on the region D in the $x y$-plane given by

$$
D=\{(r, \theta): 0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

where $\beta-\alpha \leq 2 \pi$. Then

$$
\iint_{D} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) \cdot r d r d \theta
$$

Warning: Do NOT forget the factor of r in the differential form $d A=r d r d \theta$ that results from measuring "sizes" of polar regions

Theorem 13.4. p. 988 Double Integrals over More General Polar Regions

Let $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function (where the domain is written in polar coordinates) on the region D in the $x y$-plane given by

$$
D=\{(r, \theta): 0 \leq g(\theta) \leq r \leq h(\theta), \alpha \leq \theta \leq \beta\}
$$

where $\beta-\alpha \leq 2 \pi$. Then

$$
\iint_{D} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r, \theta) \cdot r d r d \theta
$$

Theorem. p. 989 Areas of Polar Region

The area of the region D in the $x y$-plane, written in polar coordinates, defined by

$$
D=\{(r, \theta): 0 \leq g(\theta) \leq r \leq h(\theta), \alpha \leq \theta \leq \beta\}
$$

is given by the double integral

$$
\text { area of } D=\iint_{D} 1 d A=\int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} r d r d \theta
$$

