Math 1D: Lesson 3 Suggested Problems

Theoretic Problems: Discussed in-class

- 1. Construct the cartesian coordinate system in \mathbb{R}^2 from first principles. In particular:
 - A. Explain how to create a cartesian coordinate system by establishing the origin (x, y) = (0, 0), the x-axis with equation y = 0, and the y-axis with equation x = 0.
 - B. Consider the point (-3, 4). What does it mean to travel a distance of -3 along the x-axis and a distance of +4 along the y-axis?
 - C. Explain why we can interpret the ordered pair (x, y), encoded in cartesian coordinates, as traveling signed (or oriented) distances.
 - D. Jeff claimed that in order to create a cartesian coordinate system, it is enough to specify the location of three points: (0,0), (1,0), (0,1). Explain why these three points establish the x- and y-axis and create an orientation in which we can travel signed distances with respect to x and y.
- 2. Construct the polar coordinate system in \mathbb{R}^2 from first principles. In particular:
 - A. Explain how to create a polar coordinate system by establishing the pole $(r, \theta) = (0, 0)$, the positive polar axis $\theta = 0$ with $r \ge 0$, and choosing an orientation for the positive direction $\theta \ge 0$.
 - B. Explain why points in polar coordinates do NOT have a unique representation.
 - C. Explain the convention we use to choose a "unique" polar representation for each point in \mathbb{R}^2
 - D. Derive each of the formulas to convert from cartesian coordinates to polar coordinates.
 - E. Derive each of the formulas to convert from polar coordinates to cartesian coordinates.

Problems Solved in Jeff's Handwritten Notes

- 3. Example 10.2.1 p. 720 721
- 4. Example 10.2.2 p. 721 722

Suggested Problems: Answers in Book

- 3. Example 10.2.3 p. 723
- 4. Example 10.2.4 p. 724
- 5. Example 10.2.5 p. 725
- 6. Example 10.2.9 p. 726 727

Optional Challenge Problems

3. Exercise 10.2.110 p. 732