\qquad

Math 1D: Lesson 2 Suggested Problems

Theoretic Problems: Discussed in-class

1. Let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function on a nonrectangular region encoded in cartesian coordinates. Derive the limit definition for the double integral of a function:

$$
\iint_{D} f(x, y) d A=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
$$

A. Explain how to set up the general partition of the rectangular region D and to enumerate subregions from $k=1,2, \ldots, n$.
B. Explain how to choose a sample point $\left(x_{k}^{*}, y_{k}^{*}\right)$ from the k th subregion of the partition.
C. Explain how to translate the Riemann sum

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
$$

into the integral by taking a limit with respect to Δ where Δ is the maximum diagonal length of the subregions.
2. Let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function on a nonrectangular, y-simple region encoded in cartesian coordinates

$$
D=\{(x, y): a \leq x \leq b \text { and } g(x) \leq y \leq h(x)\}
$$

Recall the definition of the iterated integral:

$$
\begin{aligned}
\iint_{D} f(x, y) d A & =\int_{a}^{b} A(x) d x \quad \text { where } A(x)=\int_{g(x)}^{h(x)} f(x, y) d y \\
& =\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
\end{aligned}
$$

A. Interpret the function $A(x)$ as the area under a curve created by intersecting the surface $f(x, y)$ with a plane having a normal vector $\mathbf{n}=\langle 1,0,0\rangle$ going through the point $(x, 0,0)$.
B. Explain why $A(x)$ is a function of x
C. Explain why the integral that defines $A(x)$ is taken with respect to variable y.
3. Let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function on a nonrectangular, x-simple region encoded in cartesian coordinates

$$
D=\{(x, y): g(y) \leq x \leq h(y) \text { and } c \leq y \leq d\}
$$

Recall the definition of the iterated integral:

$$
\begin{aligned}
\iint_{D} f(x, y) d A & =\int_{c}^{d} A(y) d y \quad \text { where } A(y)=\int_{g(y)}^{h(y)} f(x, y) d x \\
& =\int_{c}^{d} \int_{g(y)}^{h(y)} f(x, y) d x d y
\end{aligned}
$$

A. Interpret the function $A(y)$ as the area under a curve created by intersecting the surface $f(x, y)$ with a plane having a normal vector $\mathbf{n}=\langle 0,1,0\rangle$ going through the point $(0, y, 0)$.
B. Explain why $A(y)$ is a function of y.
C. Explain why the integral that defines $A(y)$ is taken with respect to variable x.

Problems Solved in Jeff's Handwritten Notes

3. Example 13.2 .1 p. $974-975$
4. Example 13.2 .2 p. 976
5. Example 13.2 .6 p. 980

Suggested Problems: Answers in Back of Book

3. Exercise 13.2 .23 p. 981
4. Exercise 13.2 .33 p. 981
5. Exercise 13.2 .47 p. 981
6. Exercise 13.2.63 p. 982
7. Exercise 13.2 .79 p. 983

Optional Challenge Problems

3. Exercise 13.2 .88 p. 983
