Theorem 13.1. p. 967 Fubini's Theorem for Double Integrals on Rectangular Regions

Let $f(x, y)$ be continuous on the rectangular regions

$$
D=\{(x, y): a \leq x \leq b, c \leq y \leq d\} .
$$

Then, the double integral of f over D may be evaluated by either of the two iterated integrals:

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

In other words, the double integral may be evaluated as iterated integrals and the order of integration does not matter. In practice, one order of integration is often easier to evaluate than the other order.

Definition. p. 970 Average Value of a Function over a Plane Region

The average value of an integrable function f over a region D is

$$
\bar{f}=\frac{1}{\text { area of } D} \iint_{D} f(x, y) d A
$$

Lesson 1: Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 13.1: Double Integrals over Rectangular Regions, p. 963-973

Definition. p. 965 Partition of rectangular $D \subseteq \mathbb{R}^{2}$

Let $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two-variable, nonnegative function defined on a rectangular region $D \subseteq \mathbb{R}^{2}$ in the $x y$-plane, where

$$
D=\{(x, y): a \leq x \leq b, c \leq y \leq d\} .
$$

A partition of the region D is formed by dividing D into n rectangular subregions using parallel lines to the x - and y-axes (not necessarily uniformly spaced). We then number each rectangle from 1 to n in any systematic way so that we count all rectangles exactly once. The side lengths of the k th rectangle are denoted Δx_{k} and Δy_{k}, so that the area of the k th rectangle is

$$
\Delta A_{k}=\Delta x_{k} \cdot \Delta y_{k}
$$

Finally, we let the point $\left(x_{k}^{*}, y_{k}^{*}\right)$ be any point in the k th rectangle, for $1 \leq k \leq n$.

To approximate the volume of the solid bounded by the surface $z=f(x, y)$ and the region D, we construct boxes on each of the n rectangles from our partition. Each box has a height of $f\left(x_{k}^{*}, y_{k}^{*}\right)$ and a base with area ΔA_{k}. Thus, the volume of the k th box is given by

$$
V_{k}=f\left(x_{k}^{*}, y_{k}^{*}\right) \cdot \Delta A_{k}=f\left(x_{k}^{*}, y_{k}^{*}\right) \cdot \Delta x_{k} \cdot \Delta y_{k}
$$

The sum of the volumes of all n boxes gives an approximation to the volume of the entire solid

$$
V \approx \sum_{k=1}^{n} V_{k}=\sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \cdot \Delta A_{k}=\sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \cdot \Delta x_{k} \cdot \Delta y_{k} .
$$

Definition. p. 965 Double Integrals

Let $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two-variable function defined on rectangular region $D \subseteq \mathbb{R}^{2}$ in the $x y$-plane. We say f is integrable on D if the limit

$$
\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
$$

exists for all partitions of D and for all choices of points $\left(x_{k}^{*}, y_{k}^{*}\right)$ within those partitions. The limit is the double integral of f over D, which we write as

$$
\iint_{D} f(x, y) d A=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
$$

