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Reference: Brigg’s “Calculus: Early Transcendentals, Second Edition”
Topics: Chapter 5: Integration, p. 333 -397

Definition. p. 351 General Riemann Sum on D = [a, b] ⊆ R

Suppose that [x0, x1], [x1, x2], ..., [xn−1, xn] are subintervals of [a, b] with

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

Let ∆k be the “length” of the subinterval [xk−1, xk]. For this definition, assume that
∆k = xk − xk−1. Let x∗k ∈ [xk−1, xk] be any point in the kth subinterval, for k = 1, 2, ..., n.
We can visualize this set up on the x−axis as follows:

If f : [a, b] ⊆ R → R is a single-variable, real-valued function defined on D = [a, b], then the
finite sum given by

n∑
k=1

f (x∗k) ∆k = f (x∗1) ∆1 + f (x∗2) ∆2 + · · ·+ f (x∗n) ∆n

is called the general Riemann sum for f on D = [a, b]

In the definition to follow, we introduce some subtle notation in the limit. In particular, we set

∆ = max {∆1, ∆2, ..., ∆n }

If we take the limit ∆→ 0, then we conclude that ∆k → 0. With this in mind, we can define integrability.

Definition. p. 351 Definite integral over D = [a, b] ⊆ R

Assume we have the same set up from our definition of the general Riemann sum for f on [a, b].
If the following limit

lim
∆→ 0

n∑
k=1

f(x∗k ) ∆k

exists and is unique for all partitions of [a, b] and all choices of x∗k ∈ [xk−1, xk] on a partition,
then we say that the function f is integrable on [a, b]. The limit is the definite integral of
f on [a, b], which we write

b∫
a

f(x) dx = lim
∆→ 0

n∑
k=1

f(x∗k ) ∆k



Let’s take a look at the notation we use to represent a definite integral. In particular, we identify each of the
individual components of this notation and delineate the underlying assumption behind these components.
As you might notice, the definite integral notation compresses many important assumptions and hides subtle
meaning within notation. This analysis will lead to some interesting observations later in Math 1D about
the use of integral notation to represent the ideas behind the multivariable integration theorems we study
in this class.

In the case of general Riemann sums, we take our region of integration D = [a, b] and establish a general
partition of this region into n subintervals

[x0, x1], [x1, x2], ..., [xn−1, xn]

with x0 = a, xn = b and

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

In the general case, we denote the “size” of the kth subinterval [xk−1, xk] by ∆k. In the (simplest) case of
Riemann integration, we measure the “size” of each subinterval as the “length” of that subinterval with

∆k = xk − xk−1

for k = 1, 2, ..., n. Because a general partition does not require a uniform discretization of the region [a, b],
each of the k subintervals can have a different length. Moreover, when we sample the function, we let x∗k
be any point on the subinterval [xk−1, xk] without requiring a specific pattern. We can contrast the general
case with the more specific regular partitions we use when taking Riemann integrals using the left-hand rule,
the right hand rule, the midpoint rule, the trapezoid rule, or Simpson’s rule.



Definition. p. 336 Regular partition (uniform discritization)

Suppose [a, b] is a closed interval in R containing n subintervals

[x0, x1], [x1, x2], ..., [xn−1, xn]

of equal “size” given by

∆x =
b− a

n

with a = x0 and b = xn. The endpoints x0, x1, x2, ..., xn1 , xn of the subintervals are called
uniform grid points and they create a regular partition (uniform discritization) of the
interval [a, b]. In general under these assumptions, the kth grid point is

xk = a + k ∆x

for k = 0, 1, 2, ..., n.

Definition. p. 337 Special Riemann Sums

Suppose f : [a, b] ⊆ R→ R is a single-variable, real-valued function. Suppose the domain [a, b]
is divided into n subintervals of equal length ∆x. If x∗k is any point in the kth subinterval
[xk−1, xk], for k = 1, 2, ..., n, then

f (x∗1) ∆x + f (x∗2) ∆x + · · ·+ f (x∗n) ∆x

is called a Riemann sum for f on [a, b]. This sum is called a Riemann sum computed via:

i. the left-hand rule if x∗k = xk−1 is the left endpoint of [xk−1, xk].

ii. the right-hand rule if x∗k = xk is the right endpoint of [xk−1, xk]

iii. the midpoint rule if x∗k =
xk − xk−1

2
is the midpoint of [xk−1, xk]


