
MATH 1D: EXAM 2, V1A c© Jeffrey A. Anderson ANSWER KEY

1. Consider the single-variable, vector-valued function:

r(t) = 〈x(t), y(t)〉

Suppose that the functions x(t) and y(t) have continuous derivatives for all t ∈ [a, b]. Let’s construct the
limit definition of the derivative r′(t).

A. (6 points) Find two points on the curve C, call them P0 and P . Construct the vector-valued
equation for the secant line through these two points.

Solution: Let P0(x0, y0) = r(t0) and P (x, y) = r(t) be two points on the curve C where
t0, t ∈ [a, b]. Then, we can construct the vector v ∈ R2 with a tail at point P0 and head at
point P as

v = r(t)− r(t0) = 〈x− x0, y − y0〉

The secant line through these two points is given by

`(α) = p0 + α · v

where α ∈ R is a parameter.

B. (6 points) Using the proper limit, construct the derivative vector r′(t) as the vector that defines
the direction of the tangent line. Also, explain how we know that

r′(t) = 〈 x′(t) , y′(t) 〉

Solution: To define the “direction” of the tangent vector to the curve C at the point r(t0), we
will take two steps. First, we recognize that the tangent vector to the curve C will be parallel
to the vector v = r(t) − r(t0) when we take the limits as t −→ t0. However, the problem is
that when we attempt to find the limit

lim
t→t0

r(t)− r(t0) = 0

we see that the limit approaches the zero vector, since r(t) converges to the point r(t0) in the
limit. However, we can define the rescaled tangent vector as

r′(t0) = lim
t→t0

1

t− t0
· (r(t)− r(t0))

= lim
t→t0

〈
x− x0
t− t0

,
y − y0
t− t0

〉

=

〈
lim
t→t0

x− x0
t− t0

, lim
t→t0

y − y0
t− t0

〉

= 〈x′(t0), y′(t0)〉



2. Suppose that we have a parameterized curve C = { r(t) : a ≤ t ≤ b } where r(t) = 〈x(t), y(t)〉. Suppose
that the functions x(t) and y(t) have continuous derivatives for all t ∈ [a, b].

A. (6 points) Let L represent the total arc length of the curve C. Using the diagram below, explain
why we can approximate L, the arc length of the curve C, as

L ≈
n∑
k=1

2

√
(∆xk)

2
+ (∆yk)

2

Notice that in the diagram, we assume that n = 4.

Solution: Please see Lesson 10: Jeff’s Handwritten Notes.

B. (6 points) Explain how to use the mean value theorem and a limit to derive the precise arc length
formula

L =

b∫
a

‖r′(t)‖2 dt

Make sure to explain how the limit affects each term in the approximation and results in the stated
definition for calculating the arc length L of the curve C.

Solution: Please see Lesson 10: Jeff’s Handwritten Notes.
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3. (8 points) Evaluate the integral: ∫∫∫
D

e(
x2+y2+z2)

3/2

dV

where D is the unit ball in R3 centered at the origin. (Hint: try a change of variables into spherical
coordinates).

Solution: It is worth noting that if we try to integrate this function as written using iterated
integrals, we very quickly fail. Based on our hint, we will try change of variables to spherical
coordinates. We recall that when transforming from cartesian coordinates into spherical coordinates,
we have

ρ2 = x2 + y2 + z2

Moreover, by the description of our region given in the problem, we know that

D = { (ρ, φ, θ) : 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π }

Finally, we remember from our derivation that the differential form translation from cartesian to
spherical coordinates takes the form:

dV = dx dy dz = ρ2 sin(φ) dρ dφ dθ

Then, let’s take our triple integral using iterated integration in spherical coordinates:

∫∫∫
D

e(
x2+y2+z2)

3/2

dV =

1∫
0

π∫
0

2π∫
0

e(
ρ2)

3/2

ρ2 sin(φ) dθ dφ dρ

=

1∫
0

π∫
0

2π∫
0

ρ2 · eρ
3

sin(φ) dθ dφ dρ

= 2π

1∫
0

π∫
0

ρ2 · eρ
3

sin(φ) dφ dρ

= 2π

1∫
0

ρ2 · eρ
3

π∫
0

sin(φ) dφ dρ

= 2π

1∫
0

ρ2 · eρ
3
(
− cos(φ)

∣∣∣π
0

)
dρ

= 4π

1∫
0

ρ2 · eρ
3

dρ
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Now we need to find this last integral. Notice that we can use a substitution technique to simplify
our integral. In particular, we set

u = ρ3 =⇒ du = 3 ρ2.

We also see that u(1) = 1 and ρ(0) = 0. Now we do a change of variables.

∫∫∫
D

e(
x2+y2+z2)

3/2

dV =
4π

3

1∫
0

e
ρ3

3 ρ2 dρ

=
4π

3

1∫
0

eu du

=
4π

3
eu
∣∣∣1
0

We conclude by evaluating this expression to find:∫∫∫
D

e(
x2+y2+z2)

3/2

dV =
4π

3
(e− 1)
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4. (8 points) Compute the line integral: ∫
C

f ds

where f : D ⊆ R2 −→ R is given by f(x, y) = e
x+y

and C is the line segment from the point O(0, 0) to
the point P (2, 1)

Solution: Let’s begin by describing our curve via a parametric equation. Specifically, we have
C = {`(t) : 0 ≤ t ≤ 1} where

`(t) = 〈0, 0〉+ t · 〈2, 1〉 = 〈 2 t, t 〉 = 〈x(t), y(t)〉

We also remember from our work in class that since we define the arc length function as

s(t) =

t∫
a

‖ ` ′ (u) ‖2 du

we know via the fundamental theorem of calculus that

s′(t) =
d

dt

t∫
a

‖ ` ′ (u) ‖2 du = ‖ ` ′ (t) ‖2

By changing variables, we know ds = ‖ ` ′ (t) ‖2 dt. With this in mind, we can calculate the line
integral ∫

C

f ds =

∫
C

f(x(t), y(t)) ‖ ` ′ (t) ‖2 dt

=

1∫
0

ex(t)+y(t)
√

5 dt

=
√

5

1∫
0

e3t dt

=

√
5

3
e3t
∣∣∣1
0

We see that our desired line integral is

∫
C

f ds =

√
5

3

(
e3 − 1

)
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5. (10 points) Compute the circulation of the vector field

F (x, y) = 〈2y,−2x〉

along the unit circle C, oriented counterclockwise.

Solution: Let’s begin by describing our curve via a parametric equation. Specifically, we have
C = {r(t) : 0 ≤ t ≤ 2π} where

r(t) = 〈 cos(t), sin(t) 〉 = 〈x(t), y(t) 〉

We recall that the circulation is given as the following line integral:∫
C

f ds =

∮
C

⇀

F ·
⇀

T ds =

∮
C

⇀

F(r(t)) · r ′ (t) dt

Based on our problem statement, we can write

⇀

F(r(t)) =
⇀

F(x(t), y(t)) = 〈 2 y(t) , −2x(t) 〉 = 〈 2 sin(t) , −2 cos(t) 〉

We also have that

r′(t) = 〈x ′ (t), y ′ (t) 〉 = 〈− sin(t), cos(t) 〉

We can use these two calculations to find our circulation on this curve:∫
C

f ds =

∮
C

⇀

F(r(t)) · r ′ (t) dt

=

∮
C

〈 2 sin(t) , −2 cos(t) 〉 · 〈− sin(t), cos(t) 〉 dt

= −
2π∮
0

2 sin2(t) + 2 cos2(t)dt

= −
2π∮
0

2dt

= −4π
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Optional Challenge Problem

6. (5 points) State and prove the fundamental theorem of calculus.

Solution: Below we state the Fundamental Theorem of Calculus:

Theorem 5.5. p. 366 Fundamental Theorem of Calculus, Part 1

Let f : D ⊆ R −→ R be a function defined on the region D = [a, b].
Define the area function

A(x) =

x∫
a

f(t) dt

If f is continuous on [a, b], then A(x) is continuous on [a, b] and
differentiable on (a, b). Moreover A′(x) = f(x). Equivalently, we can
write

A′(x) =
d

dx

 x∫
a

f(t) dt

 = f(x)

In words, we state that the area function A(x) of f is an antiderivative
of f on [a, b].

Theorem 5.5. p. 366 Fundamental Theorem of Calculus, Part 2

Let f : D ⊆ R −→ R be a function defined on the region D = [a, b].
If F (x) is any antiderivative of f on the region [a, b], then

b∫
a

f(x) dx =

b∫
a

[
d

dx
[ F (x) ]

]
dx = F (b)− F (a)

In words, we state that the area function A(x) of f is an antiderivative
of f on [a, b].

A good proof of this theorem is on pages 371 - 372. Please see that proof and recreate the arguments
for yourself.
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