
MATH 1D: EXAM 1, V1A c© Jeffrey A. Anderson ANSWER KEY

1. Let f : D ⊆ R −→ R be a continuous function on an interval D = {x : a ≤ x ≤ b} ⊆ R. In this problem,
we will derive the limit definition for the single integral of a function:

b∫
a

f(x) dx = lim
∆→0

n∑
k=1

f(x∗k) ∆xk

A. (6 points) Explain how to set up a general partition of D, how to choose a sample input value
x∗k from the kth subregion of the partition of the region D and to enumerate subregions from
k = 1, 2, ..., n.

B. (6 points) Explain how to translate the Riemann sum
n∑
k=1

f(x∗k) ∆xk into the integral by taking a

limit with respect to ∆ where ∆ is the maximum size of the subregions. With this in mind, please
explain each symbol in integral notation.

Solution: Please see lesson notes and textbook for a detailed description of solution. Jeff is
in the process of creating full typed solutions...



2. Consider the following integral ∫∫
D

f(x, y) dA

where the integrand f(x, y) = x + y and D ⊆ R2 is the region bounded below by y = |x| and above
y = 20− x2

A. (6 points) Fill out the table below and sketch the region of integration

x y = |x| y = 20− x2

-5 5 -5

-4 4 4

-3 3 11

-2 2 16

-1 1 19

0 0 20

1 1 19

2 2 16

3 3 11

4 4 4

5 5 -5

−5

−5

−4

−4

−3

−3

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

−1
−2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

−1
−2

••

Left P.o.I

(−4, 4)

Right P.o.I

(4, 4)

0
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B. (6 points) Evaluate the integral:
∫∫
D

f(x, y) dA described in problem 2 above.

Solution: We will split our region into two y-simple subregions D = D1 ∪D2 where

D1 = {(x, y) : −4 ≤ x ≤ 0 and − x ≤ y ≤ 20− x2} and

D2 = {(x, y) : 0 ≤ x ≤ 4 and x ≤ y ≤ 20− x2}

Once we’ve done this, we can write:∫∫
D

f(x, y) dA =

∫∫
D1

f(x, y) dA+

∫∫
D2

f(x, y) dA

We can do each of these integrals separately. Let’s start with the integral over the y−simple
subregion D1:

∫∫
D1

f(x, y) dA =

0∫
−4

20−x2∫
−x

x+ y dy dx

Let’s deal with the inner integral first. To this end, consider:

20−x2∫
−x

x+ y dy = x · y +
y2

2

∣∣∣20−x2

−x

= x · (20− x2 + x) +
1

2
·
(
(20− x2)2 − (−x)2

)

= 20x+ x2 − x3 +
1

2
·
(
400− 41x2 + x4

)

= 200 + 20x− 39

2
x2 − x3 +

x4

2

Now, we can substitute this back into the outer integral:

0∫
−4

(
200 + 20x− 39

2
x2 − x3 +

x4

2

)
dx =

1, 952

5

This integral is best done using a calculator. We now repeat this process for the second
subregion D2 to find:

∫∫
D2

f(x, y) dA =

4∫
0

20−x2∫
x

x+ y dy dx =
8, 096

15

Combining these two results together, we find our double integral on the given region:∫∫
D

f(x, y) dA =
13, 952

15
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3. (6 points) Evaluate the following integral:

1∫
−1

2∫
−1

1∫
0

6x y z dy dx dz

Solution: Let’s consider the triple integral given in the problem statement. We will begin by
working with our inner-most integral:

1∫
0

6x y z dy = 3 · x · z · y2
∣∣∣1
0

= 3 · x · z

Then, we can use this value to work on the middle integral:

2∫
−1

3 · x · z dx =
3

2
· z · x2

∣∣∣2
−1

=
3

2
· z
(

22 − (−1)2
)

=
15

2
· z

Finally, we end with the outer integral given by

1∫
−1

15

2
· z dz =

15

4
· z2

∣∣∣1
−1

=
15

4
·
(
12 − (−1)2

)
= 0.
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4. Let f : D ⊆ R2 −→ R be a continuous function on a polar rectangle

D = {(r, θ) : a ≤ r ≤ b and α ≤ θ ≤ β}

where z = f(r, θ) is given in polar coordinates.

A. (6 points) Explain how to set up the uniform discretization (a regular partition) of the polar
rectangle D and derive the formula for the area of the kth sector of our partition as ∆Ak =
r∗k · ∆r · ∆θ

B. (6 points) Now, explain why we define of the double integral of our function f on the polar rectangle
as:

∫∫
D

f(r, θ) dA =

β∫
α

b∫
a

f(r, θ) · r dr dθ

and explain why the integral has a factor of r in the differential form dA.

Solution: Please see lesson notes and textbook for a detailed description of solution. Jeff is in the
process of creating full typed solutions...
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5. (8 points) Use a double integral to find the volume of the solid bounded between the paraboloids:

z = x2 + y2 and z = 64− 4x2 − 4y2.

Be sure to explain your reasoning and show your work.

Solution: We begin by setting up the desired double integral to find the volume of the solid describe
in this problem: ∫∫

D

64− 5x2 − 5y2 dA

where the region D =
{

(x, y) : x2 + y2 ≤ 64
5

}
. We notice that encoding this problem using cartesian

coordinates results in nasty arithmetic. Instead, let’s transform into polar coordinates. To this end,
we notice

D =

{
(r, θ) : 0 ≤ θ < 2π, 0 ≤ r ≤ 8√

5

}
Then, we can write the following integral

2π∫
0

8√
5∫

0

(
64− 5r2

)
r · dr dθ

Let’s begin with the inner integral:

8√
5∫

0

(
64− 5r2

)
r · dr = 32r2 − 5

4
r4
∣∣∣ 8√

5

0

= 32 ·
(

8√
5

)2

− 5

4
·
(

8√
5

)4

=
1024

5

Then, we use this result to evaluate the outer integral:

2π∫
0

1024

5
dθ =

2048π

5
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Optional Challenge Problem

6. (5 points) Show that

∞∫
−∞

e
−x2

dx =
√
π.

Solution: If we assume that

I =

∞∫
−∞

e
−x2

dx,

then we can state that

I2 =

 ∞∫
−∞

e
−x2

dx

 ·
 ∞∫
−∞

e
−y2

dy



=

∞∫
−∞

∞∫
−∞

e
−(x2+y2)

dx dy

=

2π∫
0

∞∫
0

e
−(r2) · r dr dθ =

2π∫
0

A(θ) dθ =

2π∫
0

1

2
dθ = π

Then, by taking the square root of both sides, we see that I =
√
π, which is exactly what we wanted

to show. In the last step above, we transformed the double integral in rectangular coordinates into
a single iterated integral with respect to θ, where we set

A(θ) =

∞∫
0

e
−(r2) · r dr let u = r2 −→ 1

2
du = r dr

= lim
t→∞

t∫
0

1

2
· e−u du

= lim
t→∞

−1

2
· e−u

∣∣∣t
0

= −1

2
lim
t→∞

(
1

et
− 1

e0

)
=

1

2
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