1. Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function on an interval $D=\{x: a \leq x \leq b\} \subseteq \mathbb{R}$. In this problem, we will derive the limit definition for the single integral of a function:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

A. (6 points) Explain how to set up a general partition of D, how to choose a sample input value x_{k}^{*} from the k th subregion of the partition of the region D and to enumerate subregions from $k=1,2, \ldots, n$.
B. (6 points) Explain how to translate the Riemann sum $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}$ into the integral by taking a limit with respect to Δ where Δ is the maximum size of the subregions. With this in mind, please explain each symbol in integral notation.

Solution: Please see lesson notes and textbook for a detailed description of solution. Jeff is in the process of creating full typed solutions...
2. Consider the following integral

$$
\iint_{D} f(x, y) d A
$$

where the integrand $f(x, y)=x+y$ and $D \subseteq \mathbb{R}^{2}$ is the region bounded below by $y=|x|$ and above $y=20-x^{2}$
A. (6 points) Fill out the table below and sketch the region of integration

x	$y=\|x\|$	$y=20-x^{2}$
-5	5	-5
-4	4	4
-3	3	11
-2	2	16
-1	1	19
0	0	20
1	1	19
2	2	16
3	3	11
4	4	4
5	5	-5

Left P.o.I
$(-4,4)$

Right P.o.I
$(4,4)$
B. (6 points) Evaluate the integral: $\iint_{D} f(x, y) d A$ described in problem 2 above.

Solution: We will split our region into two y-simple subregions $D=D_{1} \cup D_{2}$ where

$$
\begin{aligned}
& D_{1}=\left\{(x, y):-4 \leq x \leq 0 \text { and }-x \leq y \leq 20-x^{2}\right\} \text { and } \\
& D_{2}=\left\{(x, y): 0 \leq x \leq 4 \text { and } x \leq y \leq 20-x^{2}\right\}
\end{aligned}
$$

Once we've done this, we can write:

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

We can do each of these integrals separately. Let's start with the integral over the y-simple subregion D_{1} :

$$
\iint_{D_{1}} f(x, y) d A=\int_{-4}^{0} \int_{-x}^{20-x^{2}} x+y d y d x
$$

Let's deal with the inner integral first. To this end, consider:

$$
\begin{aligned}
\int_{-x}^{20-x^{2}} x+y d y & =x \cdot y+\left.\frac{y^{2}}{2}\right|_{-x} ^{20-x^{2}} \\
& =x \cdot\left(20-x^{2}+x\right)+\frac{1}{2} \cdot\left(\left(20-x^{2}\right)^{2}-(-x)^{2}\right) \\
& =20 x+x^{2}-x^{3}+\frac{1}{2} \cdot\left(400-41 x^{2}+x^{4}\right) \\
& =200+20 x-\frac{39}{2} x^{2}-x^{3}+\frac{x^{4}}{2}
\end{aligned}
$$

Now, we can substitute this back into the outer integral:

$$
\int_{-4}^{0}\left(200+20 x-\frac{39}{2} x^{2}-x^{3}+\frac{x^{4}}{2}\right) d x=\frac{1,952}{5}
$$

This integral is best done using a calculator. We now repeat this process for the second subregion D_{2} to find:

$$
\iint_{D_{2}} f(x, y) d A=\int_{0}^{4} \int_{x}^{20-x^{2}} x+y d y d x=\frac{8,096}{15}
$$

Combining these two results together, we find our double integral on the given region:

$$
\iint_{D} f(x, y) d A=\frac{13,952}{15}
$$

3. (6 points) Evaluate the following integral:

$$
\int_{-1}^{1} \int_{-1}^{2} \int_{0}^{1} 6 x y z d y d x d z
$$

Solution: Let's consider the triple integral given in the problem statement. We will begin by working with our inner-most integral:

$$
\int_{0}^{1} 6 x y z d y=\left.3 \cdot x \cdot z \cdot y^{2}\right|_{0} ^{1}=3 \cdot x \cdot z
$$

Then, we can use this value to work on the middle integral:

$$
\begin{aligned}
\int_{-1}^{2} 3 \cdot x \cdot z d x & =\left.\frac{3}{2} \cdot z \cdot x^{2}\right|_{-1} ^{2} \\
& =\frac{3}{2} \cdot z\left(2^{2}-(-1)^{2}\right) \quad=\frac{15}{2} \cdot z
\end{aligned}
$$

Finally, we end with the outer integral given by

$$
\begin{aligned}
\int_{-1}^{1} \frac{15}{2} \cdot z d z & =\left.\frac{15}{4} \cdot z^{2}\right|_{-1} ^{1} \\
& =\frac{15}{4} \cdot\left(1^{2}-(-1)^{2}\right) \\
& =0
\end{aligned}
$$

4. Let $f: D \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function on a polar rectangle

$$
D=\{(r, \theta): a \leq r \leq b \text { and } \alpha \leq \theta \leq \beta\}
$$

where $z=f(r, \theta)$ is given in polar coordinates.
A. (6 points) Explain how to set up the uniform discretization (a regular partition) of the polar rectangle D and derive the formula for the area of the k th sector of our partition as $\Delta A_{k}=$ $r_{k}^{*} \cdot \Delta r \cdot \Delta \theta$
B. (6 points) Now, explain why we define of the double integral of our function f on the polar rectangle as:

$$
\iint_{D} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) \cdot r d r d \theta
$$

and explain why the integral has a factor of r in the differential form $d A$.

Solution: Please see lesson notes and textbook for a detailed description of solution. Jeff is in the process of creating full typed solutions...
5. (8 points) Use a double integral to find the volume of the solid bounded between the paraboloids:

$$
z=x^{2}+y^{2} \quad \text { and } \quad z=64-4 x^{2}-4 y^{2}
$$

Be sure to explain your reasoning and show your work.

Solution: We begin by setting up the desired double integral to find the volume of the solid describe in this problem:

$$
\iint_{D} 64-5 x^{2}-5 y^{2} d A
$$

where the region $D=\left\{(x, y): x^{2}+y^{2} \leq \frac{64}{5}\right\}$. We notice that encoding this problem using cartesian coordinates results in nasty arithmetic. Instead, let's transform into polar coordinates. To this end, we notice

$$
D=\left\{(r, \theta): 0 \leq \theta<2 \pi, 0 \leq r \leq \frac{8}{\sqrt{5}}\right\}
$$

Then, we can write the following integral

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{8}{\sqrt{5}}}\left(64-5 r^{2}\right) r \cdot d r d \theta
$$

Let's begin with the inner integral:

$$
\begin{aligned}
\int_{0}^{\frac{8}{\sqrt{5}}}\left(64-5 r^{2}\right) r \cdot d r & =32 r^{2}-\left.\frac{5}{4} r^{4}\right|_{0} ^{\frac{8}{\sqrt{5}}} \\
& =32 \cdot\left(\frac{8}{\sqrt{5}}\right)^{2}-\frac{5}{4} \cdot\left(\frac{8}{\sqrt{5}}\right)^{4} \\
& =\frac{1024}{5}
\end{aligned}
$$

Then, we use this result to evaluate the outer integral:

$$
\int_{0}^{2 \pi} \frac{1024}{5} d \theta=\frac{2048 \pi}{5}
$$

Optional Challenge Problem

6. (5 points) Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Solution: If we assume that

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

then we can state that

$$
\begin{aligned}
I^{2} & =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right) \cdot\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\left(r^{2}\right)} \cdot r d r d \theta=\int_{0}^{2 \pi} A(\theta) d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\pi
\end{aligned}
$$

Then, by taking the square root of both sides, we see that $I=\sqrt{\pi}$, which is exactly what we wanted to show. In the last step above, we transformed the double integral in rectangular coordinates into a single iterated integral with respect to θ, where we set

$$
\begin{array}{rlr}
A(\theta) & =\int_{0}^{\infty} e^{-\left(r^{2}\right)} \cdot r d r \quad \text { let } u=r^{2} \longrightarrow \frac{1}{2} d u=r d r \\
& =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{2} \cdot e^{-u} d u \\
& =\lim _{t \rightarrow \infty}-\left.\frac{1}{2} \cdot e^{-u}\right|_{0} ^{t} \\
& =-\frac{1}{2} \lim _{t \rightarrow \infty}\left(\frac{1}{e^{t}}-\frac{1}{e^{0}}\right)=\frac{1}{2}
\end{array}
$$

