Name : \qquad
\qquad

1. Suppose $z=f(x, y)$ is a two-variable function and let $z_{0} \in \mathbb{R}$ be a constant value in the range of the function f.
a. What is the definition of the contour curve $C_{z_{0}}(f)$?
b. What is the definition of the level curve $L_{z_{0}}(f)$?
c. Describe are the similarities and differences between $L_{z_{0}}(f)$ and $C_{z_{0}}(f)$?
d. Describe how level curves are related to contour curves?
2. Find the domain and range of the function $f(x, y)=\sqrt{80-5 x^{2}-5 y^{2}}$
3. Graph several level curves of the function $z=x^{2}+\frac{y^{2}}{9}$.
4. Identify the trace of the surface $\frac{x^{2}}{6}+24 y^{2}+\frac{z^{2}}{24}-6=0$ in the plane $y=0$.
5. Consider the function

$$
z=x^{2}+y^{2}-16
$$

find a parametric equation to the tangent line of the level curve $L_{0}(f)$ at the point $(-2 \sqrt{2},-2 \sqrt{2})$. Then, graph this level curve and its tangent line.
6. Use a scalar projection to show that the distance from point $P\left(x_{1}, y_{1}\right)$ to line $a x+b y+c=0$ is

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Draw a diagram and explain your reasoning in detail using full sentences.

