1. T F If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, then $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2$

2. Find values of $b \in \mathbb{R}$ such that the vectors $\langle -11, b, 2 \rangle$ and $\langle b, b^2, b \rangle$ are orthogonal.

- 3. Given $\mathbf{x} = \langle 4, 0 \rangle$ and $\mathbf{y} = \langle 5, 2 \rangle$, find the projection of vector \mathbf{x} onto the vector \mathbf{y} ?
- 4. Suppose we define the following two vectors:

$$\mathbf{v} = -4\mathbf{i} - \mathbf{j} + 4\mathbf{k}, \qquad \qquad \mathbf{w} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$

Find the dot product $\mathbf{v}\cdot\mathbf{w}$ and the angle between these vectors

5. For vectors $\mathbf{u} = \langle -2, -3, -2 \rangle$ and $\mathbf{v} = \langle 2, -1, -2 \rangle$, express the vector \mathbf{u} as a sum of two vectors

 $\mathbf{u}=\mathbf{p}+\mathbf{r}$

where \mathbf{p} is parallel to \mathbf{v} and \mathbf{r} is orthogonal to \mathbf{v} .

^{6.} Determine the minimum distance between the point P(1, -1, -1) and the line L that goes through the origin in the direction of vector $\mathbf{v} = \langle 4, 9, -4 \rangle$. Hint: remember that the "line" L in the direction of vector \mathbf{v} is the set of all possible scalar multiples $t \cdot \mathbf{v}$ for any $t \in \mathbb{R}$.