\qquad
\qquad

1. $\mathrm{T} \quad \mathrm{F} \quad$ If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$, then $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$
2. Find values of $b \in \mathbb{R}$ such that the vectors $\langle-11, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ are orthogonal.
3. Given $\mathbf{x}=\langle 4,0\rangle$ and $\mathbf{y}=\langle 5,2\rangle$, find the projection of vector \mathbf{x} onto the vector \mathbf{y} ?
4. Suppose we define the following two vectors:

$$
\mathbf{v}=-4 \mathbf{i}-\mathbf{j}+4 \mathbf{k}, \quad \mathbf{w}=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}
$$

Find the dot product $\mathbf{v} \cdot \mathbf{w}$ and the angle between these vectors
5. For vectors $\mathbf{u}=\langle-2,-3,-2\rangle$ and $\mathbf{v}=\langle 2,-1,-2\rangle$, express the vector \mathbf{u} as a sum of two vectors

$$
\mathbf{u}=\mathbf{p}+\mathbf{r}
$$

where \mathbf{p} is parallel to \mathbf{v} and \mathbf{r} is orthogonal to \mathbf{v}.
6. Determine the minimum distance between the point $P(1,-1,-1)$ and the line L that goes through the origin in the direction of vector $\mathbf{v}=\langle 4,9,-4\rangle$. Hint: remember that the "line" L in the direction of vector \mathbf{v} is the set of all possible scalar multiples $t \cdot \mathbf{v}$ for any $t \in \mathbb{R}$.

