Name : \qquad
\qquad

1. $\mathrm{T} \quad \mathrm{F} \quad$ Let $c \in \mathbb{R}$ and let $\mathbf{x} \in \mathbb{R}^{2}$. Then $\|c \mathbf{x}\|_{2}=c\|\mathbf{x}\|_{2}$.
2. Find the vector in the direction of $\langle 10,24\rangle$ with length 4.
3. Consider the following three vectors

$$
\mathbf{u}=\langle 4,-9\rangle, \quad \mathbf{v}=\langle-5,9\rangle, \quad \mathbf{w}=\langle-2,-7\rangle
$$

Which vector has the greater magnitude: $\mathbf{u}-\mathbf{v}$ or $\mathbf{w}-\mathbf{u}$.
4. Let $\mathbf{u}=\langle a, 5\rangle$ and $\mathbf{v}=\langle 3,7\rangle$
a. Find the value of parameter a such that \mathbf{u} is parallel to \mathbf{v}
b. As we will see in lesson 3 , two nonzero vectors $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ are orthogonal if and only if $u_{1} v_{1}+u_{2} v_{2}=0$. Find the value of a such that \mathbf{u} is orthogonal to \mathbf{v}.

