\qquad
\qquad

Math 1C: INA Lesson 4 Suggested Problems

Theoretic Problems: Discussed in-class

1. Ratio and Root Test

A. State the ratio test for convergence of a series with positive terms.
B. State the root test for convergence of a series with positive terms.
C. State the direct comparison test for convergence of a series with positive terms.
D. State the limit comparison comparison test for convergence of a series with positive terms.
E. Discuss the guidelines for choosing a test for series containing positive terms.

Problems Solved in Jeff's Handwritten Notes

2. Example 8.5.1a p. 641: Determine if the following series converges

$$
\sum_{n=1}^{\infty} \frac{10^{n}}{n!}
$$

3. Example 8.5 .1 b p. 641: Determine if the following series converges

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!}
$$

4. Example 8.5.1c p. 641: Determine if the following series converges

$$
\sum_{n=1}^{\infty} e^{-n}\left(n^{2}+4\right)
$$

5. Can we use the ratio test to analyze the convergence behavior of the harmonic series? Why or why not?
6. Example 8.5.2a p. 643: Determine if the following series converges

$$
\sum_{n=1}^{\infty}\left[\frac{4 n^{2}-3}{7 n^{2}+6}\right]^{n}
$$

7. Example 8.5 .2 b p. 643: Determine if the following series converges

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{10}}
$$

8. Use the direct comparison test to check the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}
$$

9. Use the direct comparison test to check the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}
$$

10. Use the direct comparison test to check the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{\ln (n)}{n}
$$

11. Use the limit comparison test to check the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}
$$

Why is it a little harder to use the direct comparison test here?
12. Use the limit comparison test to check the following series for convergence:

$$
\sum_{k=1}^{\infty} \frac{5 k^{4}-2 k^{2}+3}{2 k^{6}-k+5}
$$

Suggested Problems

13. Use the test of your choice to determine if the following series converge or diverge:
A. $\quad \sum_{k=1}^{\infty} \frac{(k!)^{3}}{(3 k)!}$
B. $\quad \sum_{k=1}^{\infty} \frac{1}{5^{k}-3^{k}}$
C. $\quad \sum_{k=1}^{\infty} \frac{k^{100}}{(k+2)!}$
D. $\quad \sum_{k=2}^{\infty} \frac{1}{k^{2} \ln (k)}$
E. $\quad \sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}+1}$
F. $\quad \sum_{k=1}^{\infty} \frac{k}{e^{k}+3 k}$
G. $\quad \sum_{k=1}^{\infty} 50 k^{-k}$
H. $\quad \sum_{k=1}^{\infty} \frac{2^{k}-1}{k^{k}+1}$
