
MATH 1C: EXAM 2 PRACTICE ANSWER KEY

Exam 2: Extra Practice Problems

1. (FR) Find an equation to the tangent plane to the surface 4x2 − y2 + 3z2 = 10 at the point (2,−3, 1).

Solution: Recall the equation for the linear approximation of a surface z = f(x, y) at a point (a, b)
given by

L(x, y) = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b) (1)

We are given (a, b) = (2,−3). However, one of the major challenges in this problem is that we do
not have z written as an explicit function of variables x and y. Instead, the given equation for the
surface defines these values implicitly. Thus, in order to find fx and fy we have one of two choices:

i. Solve for z in terms of x and y

By manipulating the equation for our surface using algebra to isolate the z2 term, we find that

z2 =
10− 4x2 + y2

3

Since this relation does not specify a function (there are pairs of input values (x, y) that result
in two different z values), we can partition this surface into two pieces:

f(x, y) =

√
10− 4x2 + y2

3
and g(x, y) = −

√
10− 4x2 + y2

3
.

Both of these functions describe the output z variable explicitly in terms of x and y. The
problem statement explains that we want to expand our surface around the point (2,−3, 1),

which implies that we will use the f(x, y) =
√

10− 4x2 + y2 description of our surface since
f(2,−3) = 1 while g(2,−3) = −1. Now, we use our knowledge of partial differentiation to find

∂f

∂x
=

−4x

3
√

10− 4x2 + y2
and

∂f

∂y
=

y

3
√

10− 4x2 + y2
.

Using these descriptions, we see that fx(2,−3) = −8/3 and fy(2,−3) = −1. Substituting
these values back into our linearization equation (1), we get our desired tangent plane

L(x, y) = 1− 8

3
(x− 2)− (y + 3).



ii. Use implicit differentiation to find our desired partial derivatives

An alternative method to solving this problem involves implicit differentiation. In this method,
we assume z = z(x, y) is a “function” of x and y but allow the relationship to be described im-
plicitly. Thus, to find the appropriate partial derivatives for our tangent plane approximation,
we work to find zx and zy at our given point (2,−3, 1) on the surface. To this end, consider:

∂

∂x

[
4x2 − y2 + 3z2

]
=

∂

∂x

[
10
]

=⇒ −2y − 6z
∂z

∂x
= 0

=⇒ ∂z

∂x
= −4x

3z

Substituting x = 2 and z = 1 into this equation, we see that zx = −8/3. Similarly, we find

∂

∂y

[
4x2 − y2 + 3z2

]
=

∂

∂y

[
10
]

=⇒ −2y + 6z
∂z

∂y
= 0

=⇒ ∂z

∂y
=

y

3z

Substituting y = −3 and z = 1 into this equation, we see zy = −1. This results in the equation
for the tangent plane

L(x, y) = 1− 8

3
(x− 2)− (y + 3).
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2. (MC) Consider the function f(x, y) = 1 + x2 + y2.

A. Find the equation for the tangent plane to f(x, y) at point (1, 2).

Solution: The tangent plane to surface z = f(x, y) at point (a, b) is given by equation

L(x, y) = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

Since (a, b) = (1, 2), we use our knowledge of partial derivatives to find

f(1, 2) = 6, fx(1, 2) = 2, fy(1, 2) = 4.

Then, we substitute these values into our general equation for L(x, y) and do some arithmetic
to find L(x, y) = 2x+ 4y − 4

B. Use the tangent plane to approximate f as (x, y) moves a distance of
1

10
√

5
units toward the origin.

Solution: Now, we want to approximate the output value of f(x, y) using our tangent plane

by moving
1

10
√

5
units toward the origin, starting at the point (1, 2). Let’s visualize this

We begin by creating v =
−−→
PO = 〈−1,−2〉 , which is a vector that points from point P (1, 2) to

origin O(0, 0). We find the unit vector u in this direction by normalizing

u =
v

‖v ‖2
=
〈−1,−2〉√

5
.

We are told that we want to move
1

10
√

5
in the direction of u, yielding the point

(x, y) =
1

10
√

5
· 〈−1,−2〉√

5
=

(
49

50
,

98

50

)
Then, using our tangent plane approximation, we see that

f

(
49

50
,

98

50

)
≈ L

(
49

50
,

98

50

)
= 5.8 .
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3. (FR) Find the points on the surface defined by

(x− y)2 + y2 + (y + z)2 = 1

at which the tangent plane is parallel to the xz-plane

Solution:

Let f(x, y, z) = (x− y)2 + y2 + (y + z)2 − 1. We want to find points (x0, y0, z0) ∈ R3 such that the
tangent plane to function f is parallel to the xz−plane.

Recall, the vector equation for a plane is given by

0 = n · (r− r0)

where n = (a, b, c) is the normal vector to our plane, r0 = (x0, y0, z0) is a specific given point in our
plane and r = (x, y, z) is the position of a general point on the plane.

We know that two planes are parallel if and only if their normal vectors are parallel. The normal
vector to the xz−plane is given by n = (0, 1, 0). Thus, we want to find point(s) on the given surface
where the tangent plane has normal vector (0, 1, 0) or normal vector (0,−1, 0). In the first case, we
need to satisfy the following three conditions:

fx(x, y, z) = 2(x− y) = 0

fy(x, y, z) = −2x+ 6y + 2z = 1

fz(x, y, z) = 2(y + z) = 0.

We can solve this system of three equation with three unknowns using any method we’d like to find
that the conditions hold if and only if (x0, y0, z0) = (0.5, 0.5,−0.5).

On the other hand, in the second case we need to have

fx(x, y, z) = 2(x− y) = 0

fy(x, y, z) = −2x+ 6y + 2z = −1

fz(x, y, z) = 2(y + z) = 0.

which occurs when (x0, y0, z0) = (−0.5,−0.5, 0.5). Thus, we have two different points on the surface
where the tangent planes is parallel to the xz−plane.
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4. (MC) Find all local extreme values and any saddle point(s) of the function f(x, y) = 4xy−x4−y4 +
1

16
.

Solution: This problem is a multivariable optimization problem. To this end, we will use the
multivariable second derivative test, restated below:

Theorem 12.14. p. 941 Second Partial Derivatives Test

Let f : R2 → R be a two variable function. Suppose that f(x, y) is twice differen-
tiable on an open disk centered at the point (a, b) where ∇f(a, b) = 0. Define the
discriminant of f to be the function

D(x, y) = fxx(x, y) · fyy(x, y)− (fxy(x, y))2

Then, we can use this function to make the following conclusions:

1. If D(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum value at (a, b)

2. If D(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum value at (a, b)

3. If D(a, b) < 0, then f has a saddle point at (a, b)

4. If D(a, b) = 0, then this test is inconclusive and cannot be used to identify the
behavior of f at point (a, b)

We begin by finding all critical points where ∇f(x, y) = 0. To this end, we consider

∇f(x, y) =

[
4y − 4x3

4x− 4y3

]
=

[
0
0

]
Solving the resulting equations, we find the critical points happen when y = x3 and x = y3. There
are three points in R2 where both of these equations hold simultaneously, given by

(−1,−1) (0, 0) (1, 1)

To apply the multivariable second derivative test, we check the sign of discriminant function

D = fxxfyy − f2xy = 144x2 y2 − 16

and the sign of fxx = −12x2 at each of these points in the table below:

Classification of Critical Point
Point D(x, y) = fxxfyy − f2xy fxx using second partial derivative test

(−1,−1) D(−1,−1) = 128 > 0 fxx(−1,−1) = −12 < 0 Local Maximum

(0, 0) D(0, 0) = −16 fxx(0, 0) = 0 Saddle Point

(1, 1) D(1, 1) = 128 > 0 fxx(1, 1) = −12 < 0 Local Maximum

Using this table, we find all extreme values and saddle points of our function as was desired.

Math 1C: Exam 2, Extra Practice Problems Page 5 of 22



5. (MC) Find the extreme value(s) of the function f(x, y) = 2x+ 3y + 4 on the circle x2 + y2 = 1

Solution: In this case, we have a constrained optimization problem. We know by our discussion
in lecture that we can use Lagrange multipliers to solve this problem. To do so, we want to find a
point (x, y) and scalar λ such that ∇f = λ∇g. Consider:

∇f =

[
2
3

]
= λ

[
2x
2y

]
This results in a set of three equations in three unknowns, given by

Equation 1: 2λx = 2

Equation 2: 3λ y = 3

Equation 3: x2 + y2 = 1

Using equation 1, we can solve for λ in terms of x to find λ = 1/x. Substituting this value of lambda
into equation 2, we can solve for y in terms of x to find y = x. Since this updated equation for y is
strictly in terms of x, we can substitute this expression for y in equation 3 to find revised equation

2x2 = 1

Then, we see that there are two points that satisfy each of these equations, given by(
1√
2
,

1√
2

) (
− 1√

2
, − 1√

2

)
Thus, on the curve x2 + y2 = 1, the function f(x, y) has the following extreme values

min
x2+y2=1

f(x, y) = and max
x2+y2=1

f(x, y) =
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6. (FR) A small bike company selling utility bicycles for daily commuting has been in business for four
years. This company has recorded annual sales (in tens of thousands of dollars) as follows:

Year Sales
1 23
2 27
3 30
4 34

This data is plotted in the figure next to the table above. Although the data do not exactly lie on a
straight line, we can create a linear model to fit this data.

a. Set up the least squares problem to fit this data to a linear model.

b. Explicitly identify the unknown variables.

Solution: Recall that the least squares problem is designed to fit data collected during an
experiment to a particular mathematical model. In this case, we are told that our company
collects four data points {(ti, si)}5i=1, where

ti = the ith year that the company has been in business for i = 1, 2, 3, 4

si = the annual sales (in tens of thousands of dollars) during year i for i = 1, 2, 3, 4

We notice that the model appears to fit a linear model S(t) = c1 + c2t for unknown parameters
c1, c2 ∈ R. This model might be used to predict the revenues in i with:

S(pi) = c1 + c2 · ti.

The difference between the observed data and the model prediction is known as the model error
in the ith term, given by:

ei = (S(ti)− si) = (c1 + c2 · ti − si) .

To create the model of best fit for unknown parameters c1, c2 ∈ R, we want to minimize the
sum of the squared error terms:

f(c1, c2) =

4∑
i=1

e2i

=

4∑
i=1

(c1 + c2 · ti − si)2

= (c1 + 1 · c2 − 23)2 + (c1 + 2 · c2 − 27)2

+ (c1 + 3 · c2 − 30)2 + (c1 + 4 · c2 − 34)2

Thus, the least squares problem is to minimize the function f(c1, c2).
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c. Explain how you would use multivariable calculus to find the line of best fit.

d. What exactly is being optimized in the least squares problem?

Solution: We apply multivariable calculus to solve this problem by recalling the second deriva-
tive test for the multivariable function f(c1, c2). In particular, we know f has a local minimum
if and only if

A. ∇f = 0

B.
∂f

∂c1
· ∂

2f

∂c2
−
(

∂f

∂c1∂c2

)2

< 0 with
∂2f

∂c21
> 0.

Thus, to find the local minimum of f using multivariable calculus, we need to find the critical
points of this function and apply the second derivative test for multivariable function appro-
priately.

Remark (preview of coming attractions): There are two drawbacks of this method worth men-
tioning:

I. The method of minimizing the square of the modeled error is algebraically intensive. It
requires us to expand the multivariable function f(c1, c2) into quadratic terms in c1 and
c2. Further to find the zeros of this polynomial requires non-linear methods.

II. Although multivariable calculus can be used to verify that the critical point where∇f = 0
is a local minimum, there is theoretical result that can conclude that this point will also
be a global minimum. Thus, without further analysis of the function f , this method will
not always guarantee a unique absolute minimum error term.

In Math 2B (Linear Algebra), we will revisit this problem using least squares techniques to
improve the methods we discussed in this class.
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7. (FR) Start at the origin and move 4 units along the positive y-axis. Turn 90 degrees to the right and
move 75% of your last distance. Turn 90 degrees to the right and move 75% of your last distance. Turn
90 degrees to the right and move 75% of your last distance. Continue this processes forming a “spiral
with square corners.” Determine the y-coordinate for the point (x, y) where the spiral “ends.”

Solution: We begin our solution by drawing a diagram of this process, as seen below:

Using this diagram and the problem statement, we can track the y−coordinate of each point in
the spiral. The y−coordinate of each point on the square corners of this spiral changes every other
move, due to the 90◦ shift. We see the y−coordinate of the “end” of the spiral is given by

y = 4− 4 ·
(

3

4

)2

+ 4 ·
(

3

4

)4

− 4 ·
(

3

4

)6

+ 4 ·
(

3

4

)8

− 4 ·
(

3

4

)10

+ · · ·

= 4

∞∑
n=1

[
− 9

16

]n−1

= 4 · 1

1−
(−9
16

) =
64

25

The last line of this equality comes from applying the geometric series formula with r = − 9/16
combined with arithmetic.
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8. (EC) The following series converges. Determine the exact value of this infinite seres.

1

1
+

2

2
− 3

22
+

4

23
+

5

24
− 6

25
+

7

26
+

8

27
− 9

28
+ · · ·

Solution: Assuming this series converges, let’s begin by rewriting this series in a different order(
1

1
+

4

23
+

7

26
+ · · ·

)
+

(
2

2
+

5

24
+

8

27
+ · · ·

)
−
(

3

22
+

6

25
+

9

28
+ · · ·

)
Now, we have three different series that we want to analyze:

Series 1:

∞∑
n=1

3n− 2

23n−3
=

(
1

1
+

4

23
+

7

26
+ · · ·

)

Series 2:

∞∑
n=1

3n− 1

23n−2
=

(
2

2
+

5

24
+

8

27
+ · · ·

)

Series 3:

∞∑
n=1

3n

23n−1
=

(
3

22
+

6

25
+

9

28
+ · · ·

)
Notice, if we can find the exact limit of the following series

∞∑
n=1

n

23n

then, we can use the algebraic properties of infinite series combined with the geometric series limit
to manipulate Series 1 - 3 and find there exact limits. To this end, let’s expand some of the terms
of this series and rewrite the order as follows

∞∑
n=1

n

23n
=

1

23
+

2

26
+

3

29
+

4

212
+ · · ·+ n

23n
+ · · ·

=
1

23
+

1

26
+

1

29
+

1

212
+ · · ·+ 1

23n
+ · · ·

+
1

26
+

1

29
+

1

212
+ · · ·+ 1

23n
+ · · ·

+
1

29
+

1

212
+ · · ·+ 1

23n
+ · · ·

+
1

212
+ · · ·+ 1

23n
+ · · ·

...

+
1

23n
+ · · ·

We know by the geometric series test that

L = 1 +
1

23
+

1

26
+

1

29
+

1

212
+ · · ·+ =

∞∑
n=1

[
1

23

]n−1
=

1

1− 1
8

=
8

7
.
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Using our expansion from above, we see we can rewrite our series

∞∑
n=1

n

23n
=

1

23
· L+

1

26
· L+

1

29
· L+

1

212
· L+ · · ·+ 1

23n
· L+ · · · = L ·

∞∑
n=1

1

23n

Doing a little arithmetic on the last limit, we see

∞∑
n=1

1

23n
=

1

23
·
∞∑

n=1

[
1

23

]n−1
=

1

23
· L.

With this we have a closed form for our desired limit

∞∑
n=1

n

23n
=

1

23
· L2 =

1

8
· 82

72
=

8

49
.

Now, we can using this limit to find the exact values of series 1, 2, and 3. Let’s begin with series 1:

Series 1:

∞∑
n=1

3n− 2

23n−3
=

( ∞∑
n=1

3n

23n−3

)
−

( ∞∑
n=1

2

23n−3

)

=

(
3

2−3

∞∑
n=1

n

23n

)
−

( ∞∑
n=1

2 ·
[

1

23

]n−1)

=

(
24 · 8

49

)
−
(

2

1− 1
8

)

=
192

49
− 16

7
=

80

49
.

We move on to the second series:

Series 2:

∞∑
n=1

3n− 1

23n−2
=

( ∞∑
n=1

3n

23n−2

)
−

( ∞∑
n=1

1

23n−2

)

=

(
3

2−2

∞∑
n=1

n

23n

)
−

( ∞∑
n=1

1

2
·
[

1

23

]n−1)

=

(
12 · 8

49

)
−
(

1/2

1− 1
8

)

=
96

49
− 4

7
=

68

49
.
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Finally, we end with our third series:

Series 3:

∞∑
n=1

3n

23n−1
=

( ∞∑
n=1

3n

23n−1

)

=

(
3

2−1

∞∑
n=1

n

23n

)

=

(
6 · 8

49

)

=
48

49
.

In the original problem statement, we had added series 1 and 2 and then subtracted series 3. Thus,
the exact value of the sum in this problem is

80

49
+

68

49
− 48

49
=

100

49
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9. (MC) Determine whether each of the following series converges or diverges. Write clear and complete
solutions including the name of the series test that you use and what your final answer is.

(a)
∞∑

n=1

n+ 2

3n+ 5

Solution: Let’s define the sequence terms

an =
n+ 2

3n+ 5

We notice that the sequence terms that define this series converge to 0.333̄, since

lim
n→∞

n+ 2

3n+ 5
= lim

n→∞

[
n+ 2

3n+ 5
·

1
n
1
n

]
= lim

n→∞

1 + 2
n

3 + 5
n

=
1

3

We recall the Divergence Test, which states

Theorem 8.8. p. 627 Divergence Test

If the infinite series
∑
ak converges, then lim

k→∞
ak = 0.

Equivalently, if lim
k→∞

ak 6= 0, then the infinite series
∑
ak diverges.

Thus, by the test for divergence we know that since lim
n→∞

an 6= 0, the corresponding series in

our problem must diverge.
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(b)
∞∑

n=1

(
−2

3

)n

Solution: We notice that our sequence terms take the exact form of a geometric sequence,
with a single ration raised to the nth power. With this in mind, we recall the Geometric Series
Test, given as follows:

Theorem 8.7. p. 621 Geometric Series Test

Let a 6= 0 and let r be a real number. Then, the series

∞∑
k=1

ar
k−1

has the following convergence behavior:

If |r| < 1, then the series converges and

∞∑
k=1

ar
k−1

=
a

1− r
.

If |r| ≥ 1, then the series diverges.

Note: We can write the series using different upper and lower index as follows:

∞∑
k=1

ar
k−1

=

∞∑
k=0

ar
k

In both cases, we can determine the convergence behavior based on the geo-
metric sum formula combined with our knowledge of the limits of geometric
sequences.

If we set a = −2/3 and r = −2/3, then we can conclude that

∞∑
n=1

(
−2

3

)n

= −2

3
·

( ∞∑
n=1

(
−2

3

)n−1
)

= −2

3
· 1

1− −23
= −2

5

Thus, since the infinite series has a finite limit, we know this series converges.
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(c)
∞∑

n=2

√
n

n4 + 3

Solution: Let’s define the sequence terms

an =

√
n

n4 + 3
.

In this problem, we will attempt to bound each sequence term an above by some bn such that
∞∑

n=2
bn converges. If we can do this, we will then apply the direct comparison test which states

Theorem 8.15. p. 643 The (Direct) Comparison Test

Let
∞∑
k=1

ak and
∞∑
k=1

bk be infinite series with positive terms.

1. If 0 < ak ≤ bk for all k ∈ N and
∞∑
k=1

bk converge, then
∞∑
k=1

ak converges.

2. If 0 < bk ≤ ak for all k ∈ N and
∞∑
k=1

bk diverge, then
∞∑
k=1

ak diverges.

To this end, notice the following sequence of inequalities for all n ∈ N:

n4 + 3 ≥ n4 =⇒ 1

n4 + 3
≤ 1

n4

=⇒ n

n4 + 3
≤ n

n4
=

1

n3

=⇒
√

n

n4 + 3
≤ 1√

n3
=

1

n3/2

If we set bn = n−3/2, we see from above that an ≤ bn for all n ∈ N. We can make conclusions
about the series defined by bn using the p−series test, which states:

Theorem 8.11. p. 632 Convergence of the p-Series (The p-Series Test)

The p-series
∞∑
k=1

1

kp
converges for all p > 1 and diverges for all p ≤ 1.

Thus, by the p-series test, we have

∞∑
n=2

bn =

∞∑
n=2

1

n3/2

converges and we conclude that our original series also converges by the direct comparison test.
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(d)
∞∑

n=3

(ln(n))2

n

Solution: In this problem, let’s use the integral test for series which is given as follows:

Theorem 8.10. p. 629 Integral Test

Suppose the function f(x) satisfies the following three conditions for x ≥ 1:

i. f(x) is continuous

ii. f(x) is positive

iii. f(x) is decreasing

Suppose also that ak = f(k) for all k ∈ N. Then

∞∑
k=1

ak and

∞∫
1

f(x)dx

either both converge or both diverge. In the case of convergence, the value
of the integral is NOT equal to the value of the series.

To this end, define the function

f(x) =
( ln(x) )

2

x

on the interval [3,∞). We confirm that this function is positive, decreasing and continuous
on this interval. By the integral test, we know that the series given in the problem statement
converges if and only if the corresponding integral of our function f(x) converges. Thus, let’s
consider the integral

∞∫
3

f(x)dx =

∞∫
3

( ln(x) )
2

x
dx if u = ln(x), then du =

1

x
dx

= lim
t→∞

x=t∫
x=3

u2du

= lim
t→∞

u3

3

∣∣∣x=t

x=3

= lim
t→∞

( ln(x) )
3

3

∣∣∣x=t

x=3

= lim
t→∞

( ln(t) )
3

3
− ( ln(3) )

3

3
= +∞

Since our integral diverges, we know from the integral test that our given series also diverges.
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(e)
∞∑

n=1

5n+1

(2n)!

Solution: We can define our sequence terms as

an =
5n+1

(2n)!

which contain an nth power and a factorial. Based on this structure, we recall that the ratio
test may help us make a conclusion about the convergence behavior of this series. Let’s recall
the ratio test, given below:

Theorem 8.14. p. 641 Ratio Test

Let
∞∑
k=1

ak be an infinite series with positive terms ak > 0 for all k ∈ N. Let

r = lim
k→∞

ak+1

ak

1. If 0 ≤ r < 1, then the series converges.

2. If r > 1 (including r =∞), then the series diverges.

3. If r = 1, then the ratio test is inconclusive.

Note: In words, the ratio test says that the limit of the ratio of successive
terms of a positive series must be less than 1 to guarantee convergence of the
series.

With this in mind, consider

lim
n→∞

an+1

an
= lim

n→∞

5n+2

(2n+ 2)!
÷ 5n+1

(2n)!

= lim
n→∞

5n+2

(2n+ 2)!
· (2n)!

5n+1

= lim
n→∞

5

(2n+ 1) · (2n+ 2)

= lim
n→∞

5

4n2 + 4n+ 2
= 0.

Since the limit of the ratio above goes to zero as n → ∞, we know by the ratio test that our
series converges.
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(f)
∞∑

n=1
(−1)n+1 1

n+
√
n

Solution: In this problem, we set that the given series appears to be alternating. To this end,
let’s recall the alternating series test:

Theorem 8.18. p. 650 Alternating Series Test

Let ak > 0 for all k ∈ N and consider the alternative series

∞∑
k=1

(−1)k+1ak

If we confirm BOTH of the following:

1. The terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak
for k greater than some positive integer M)

2. lim
k→∞

ak = 0

then the alternating series converges.

In this problem, let’s define the sequence

an =
1

n+
√
n
.

Since both n > 0 and
√
n > 0 n ∈ N, we see that all sequence terms an are positive. Next, we

need to check our two conditions from the alternating series test:

1. We can confirm that the sequence terms are nonincreasing for all n ∈ N using the following
chain of inequalities:

(n+ 1) ≥ n =⇒
√
n+ 1 ≥

√
n

=⇒ (n+ 1) +
√
n+ 1 ≥ n+

√
n

=⇒ 1

(n+ 1) +
√
n+ 1

≤ 1

n+
√
n

=⇒ an+1 ≤ an

With this we confirm that {an}∞n=1 is nonincreasing.

2. Next we consider

lim
n→∞

an = lim
n→∞

1

n+
√
n

= 0

By the alternating series test, we the series given in this problem converges.
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(g)
1

14
+

1

24
− 1

34
+

1

44
+

1

54
− 1

64
+

1

74
+

1

84
− 1

94
+ · · ·

Solution: Suppose that the series is define as

∞∑
k=1

ak =
1

14
+

1

24
− 1

34
+

1

44
+

1

54
− 1

64
+

1

74
+

1

84
− 1

94
+ · · ·

for the appropriately chosen sequence {ak}∞k=1. If we define a new sequence bk = |ak|, then

∞∑
k=1

bk =

∞∑
k=1

|ak|.

Recall that absolute convergence implies convergence, as is stated in the following theorem:

Theorem 8.21. p. 651 Absolute Convergence Implies Convergence

If
∞∑
k=1

|ak| converges, then
∞∑
k=1

ak converges.

However, we see that the infinite series

∞∑
k=1

bk =

∞∑
k=1

1

n4

converges by the p−series test. Thus, our original series is absolutely convergent and thus, also
converges.
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(h)
∞∑

n=1

1√
n
− 1√

n+ 1

Solution: We might be able to apply the telescoping sum technique to this problem. We begin
by considering the sequence of partial sums associated with this infinite series, where

SN =

N∑
n=1

1√
n
− 1√

n+ 1

Let’s look at the first few sequence terms

S1
1√
1
− 1√

2

S2 =
1√
1
− 1√

2
+

1√
2
− 1√

3
= 1− 1√

3

S3 =
1√
1
− 1√

2
+

1√
2
− 1√

3
+

1√
3
− 1√

4
= 1− 1√

4

Thus, we can find the limit of the infinite series

∞∑
n=1

1√
n
− 1√

n+ 1
= lim

N→∞
SN = lim

N→∞
1− 1√

N + 1
= 1

Thus, we conclude that this series converges.
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10. (MC) The alternating series
∞∑

n=1
(−1)n+1 1√

n+ 7
converges. What should N be so that the partial sum

sN =

N∑
n=1

(−1)n+1 1√
n+ 7

estimates the exact value of the series with absolute error at most 0.001?

Solution: In this problem, we are asked to estimate the value of the alternating series

∞∑
n=1

(−1)n+1 an =

∞∑
n=1

(−1)n+1 1√
n+ 7

, where an =
1√
n+ 7

.

Moreover, we want to produce an estimate with an absolute error no larger than 10−4. To do so,
we recall the Remainder Theorem for Alternating Series:

Theorem 8.20. p. 652 Remainder in Alternating Series

Let S =
∞∑
k=1

(−1)k+1ak be a convergent alternating series with terms that

are nonincreasing in magnitude. Let Rn = S − Sn be the remainder in
approximating the value of the series by the sum of its first n terms. Then

|Rn| ≤ an+1

In other words, the magnitude of the remainder of a convergent alternating
series. is less than or equal to the magnitude of the first neglected term.

With this in mind, we want to find n ∈ N such that

an+1 <
1

104
=⇒ 1√

(n+ 1) + 7
<

1

104

=⇒ 104 <
√
n+ 8

=⇒ 108 < n+ 8

=⇒ 108 − 8 < n

Thus, if we set N ≥ 108, we know that

|S − SN | < 10−4.
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11. (MC) The series
∞∑

n=1

1

n(1 + ln(n))2
converges. What should N be so that the partial sum

sN =

N∑
n=1

1

n(1 + ln(n))2

estimates the exact value of the series with absolute error at most 0.1?

Solution: In this problem, we are asked to estimate the value of the series

∞∑
n=1

an =

∞∑
n=1

1

n(1 + ln(n))2
, with an =

1

n(1 + ln(n))2
.

Moreover, we want to produce an estimate with absolute error is bounded above by 10−1. We notice
that if we define the function

f(x) =
1

x (1 + ln(x))2
,

then the sequence terms can be generated by evaluating this function at each natural number
an = f(n). Moreover, with a little analysis we see this function is positive, continuous, and decreasing
on the interval [1,∞). Let’s recall Integral Test Remainder Theorem:

Theorem 8.12. p. 635 Estimating Series with Positive Terms

Let f(x) be a continuous, positive decreasing function, for x ≥ 1, and define
sequence ak = f(k) for all k ∈ N. Suppose the limit of the associated conver-

gent series is S =
∞∑
k=1

ak and that the sequence of partial sums is Sn =
n∑

k=1

ak.

Then, the remainder Rn = S − Sn satisfies the following inequality:

Rn <

∞∫
n

f(x)dx

In this problem we want to find N such that RN < 10−1. To this end, consider the integral

∞∫
N

1

x (1 + ln(x))2
dx <

1

10
=⇒ lim

t→∞

t∫
N

1

(1 + u)2
du <

1

10

=⇒ lim
t→∞

−1

ln(x)

∣∣∣∣∣
t

N

<
1

10

=⇒ lim
t→∞

1

ln(N)
− 1

ln(t)
<

1

10

=⇒ 1

ln(N)
<

1

10

Then, in order to approximate our series so that our absolute error is less than e10, we want to add
N > 10 terms.
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