Exam 1: Practice Problems

1. (MC) Let $\mathbf{u}=\langle 1,-2\rangle$ and $\mathbf{v}=\langle 3,4\rangle$. Find the $\operatorname{Proj}_{\mathbf{v}}(\mathbf{u})$.
2. (MC) Define two lines $L_{1}(t)$ and $L_{2}(s)$ intersect at a single point in \mathbb{R}^{3}, where

$$
\mathbf{L}_{1}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
1+t \\
2 t \\
-1+3 t
\end{array}\right] \quad \text { and } \quad \mathbf{L}_{2}(s)=\left[\begin{array}{c}
x(s) \\
y(s) \\
z(s)
\end{array}\right]=\left[\begin{array}{c}
3+2 s \\
1+s \\
-2-s
\end{array}\right]
$$

Find the point (x, y, z) of intersection. Then, find the angle θ between the lines.
3. (MC) Compute the distance from the origin $(0,0,0)$ to the plane $2 x+y-2 z=6$.
4. (MC) Find a parametric equation for line L in the intersection of the planes $x+2 z=1$ and $x+y-z=0$.
5. (MC) Let $\overrightarrow{\mathbf{A}}=\langle 3,0,-2\rangle$ and $\overrightarrow{\mathbf{B}}=\langle 0,-1,1\rangle$.
a. Find the area of the parallelogram formed by placing the vectors tail-to-tail.
b. Find an equation of the plain containing point $(1,-2,3)$ and which is parallel to both vectors.
6. (MC) Let $z=3 x+\ln \left(x^{2}+y\right)$. Compute the partial derivatives z_{y}, z_{x} and $z_{x x}$.
7. (MC) Find the point(s) on the following function $f(x, y)=x^{3}-y^{3}+3 x y$ where both $f_{x}=0$ and $f_{y}=0$.
8. (MC) Evaluate the following limit: $\lim _{(x, y) \rightarrow(1,-1)} \frac{1-\sqrt{x+y+1}}{x+y}$.
9. (MC) Verify that the following limit does not exists: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}$.
10. (MC) Let $f(x, y)=4-\sqrt{y-x^{2}}$
(a) Determine and sketch the domain of f in 2D-space.
(b) State the range of f. BRIEFLY explain how you get your answer.

