
Chapter 10

The Least Squares Problem

10.1 Introduction to Least Squares
A very popular problem in the sciences and engineering is to translate a col-

lection of data points into a corresponding mathematical model that accurately
describes the underlying phenomenon being measured. Suppose we are running
an experiment in which we measure certain dependent physical quantitates as a
function of some other independent physical quantity. For di�erent values of our
independent variable xi we make the measurement yi of the corresponding mea-
surement for our dependent variable. In this way, we obtain a set of m data points
given by

(x1, y1), (x2, y2), ... (xm, ym).

We can then use Microsoft Excel, MATLAB, Google Docs, or even our TI-84 cal-
culators to graph our given data. Given the shape of the graph, we can guess what
type of function might model our data. We might use the following function types
to model our data:

General Models Used for Data Fitting
Model Type General Equation

Linear polynomials: y(x) = a0 + a1x

Quadratic polynomials: y(x) = a0 + a1x + a2x2

General nth degree polynomial: y(x) = a0 + a1x + a2x2 + · · · + anxn

Exponential Function: y(x) = a0e a1 x

Periodic (Sinusoidal) Function: y(x) = a0 + a1 cos(x) + a2 sin(x)

Any linear combinations of Functions: y(x) = a1f1(x) + a2f2(x) + · · · + anfn(x)

We can then generate a possible model as an m ◊ n linear system.
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EXAMPLE 10.1.1
Let’s look back at Example 2.2.6 from our early discussion of vectors. Recall, in
this example, we studied the physical properties of mass-spring systems to verify
Hooke’s law via experiment. We saw that the internal force in a spring was
directly proportional to the elongation of the spring. We can state this in vector
form as follows:

f = ku

where k is the specific spring constant for the spring we use in our experiment, u is
the calculated displacement vector from Example 2.2.5 and f is the calculated force
vector from Example 2.2.1.

Note that the spring constant of a spring is a measurement of sti�ness. The
higher the spring constant, the harder it is to pull the spring apart. We can use
excel’s trend line chart option to get a formula for the value of k in this experiment
(see the figure below):

Consider our data points {(xi, yi)}m

i=1 above (in the Hooke’s law example, we
see m = 41 since we collected 41 data points). In theory, we should be able to find
a0, a1 œ R such that all of these data points lie on line

y(x) = a0 + a1x.

As we notice in our graph above however, are data points cannot be fit to a line
exactly. This is because experimental error has been introduced when the measure-
ments were made do to inaccuracy of measuring instruments, human error and other
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related inaccuracies. Thus, it is impossible to find a0, a1 œ R that models all our
data exactly (in other words, are resulting linear system is going to be inconsistent).

Assuming we choose two values a0, a1 œ R to model our data, then we can
measure the error between our chosen model y = a0 + a1x and each data point
(xi, yi) from our experiment. The individual errors for each of our m data points
can be quantified:

ei = yi ≠ (a0 + a1xi)

where i = 1, 2, ..., m. We can write the resulting system of m equations in matrix
form:

e = y ≠ Ax

where

e =

S

WWWU

e1
e2
...

em

T

XXXV
, y =

S

WWWU

y1
y2
...

ym

T

XXXV
, A =

S

WWWU

1 x1
1 x2
...

...
1 xm

T

XXXV
, x =

5
a0
a1

6
.

We call the vector e the error vector and the vector y the data vector. We know,
from our study of linear systems, that if we can fit our data exactly, so that
yi = a0 + a1xi for each i, we have ei = 0. In the language of linear algebra,
all of our data points lie on a straight line if and only if y œ Col(A).

In the Hooke’s law experiment presented above, our collected data is not collinear
(cannot be measured exactly by one line). One way we can redefine our search for
a line is to try to find a line that minimizes the euclidean norm of our error vector:

Error = ÎeÎ2 =
Ò

e2
1 + e2

2 + · · · + e2
m

.

In this paradigm, we attempt to minimize the square roots of the sum of the squares
of the individual errors, hence the term least squares. In short, when trying to find
a0, a1 œ R to model our data, we want to find vector x that minimizes the euclidean
norm of the error vector:

ÎeÎ2 = ÎAx ≠ yÎ2.

This problem is now right in the center of study of linear algebra and has an elegant
solution.
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EXAMPLE 10.1.2
Suppose you are an automotive engineer. You are building a new hybrid car that
runs on both electricity and gasoline. As part of your design process, you want to
study the relationship of the speed of your car to the fuel economy of the car. You
design an experiment to discover this relationship and track the following data:

Speed (mph) Fuel Economy
15 42.3
20 45.5
25 47.5
30 49.0
35 48.8
40 50.00
45 49.9
50 50.2
55 50.4
60 48.8
65 47.4
70 45.3

In order to set up the least-squares problem related to this data that will allow us
to model our vehicle’s fuel economy, lets first plot our data:

We notice that this data seems to be best described by a quadratic polynomial:

y(x) = a0 + a1x + a2x2.
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Let us now generate the corresponding linear system using the Vandermonde
matrix for our data:

S

WWWWWWWWWWWWWWWWWWU

1 15 225
1 20 400
1 25 625
1 30 900
1 35 1225
1 40 1600
1 45 2025
1 50 2500
1 55 3025
1 60 3600
1 65 4225
1 70 4900

T

XXXXXXXXXXXXXXXXXXV

S

U
a0
a1
a2

T

V =

S

WWWWWWWWWWWWWWWWWWU

42.3
45.5
47.5
49.0
48.8
50.0
49.9
50.2
50.4
48.8
47.4
45.3

T

XXXXXXXXXXXXXXXXXXV

This can be stated as the matrix equation

Ax = b
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EXAMPLE 10.1.3
“Moore’s law is the observation that, over the history of computing hardware, the
number of transistors in a dense integrated circuit doubles approximately every two
years. The law is named after Gordon E. Moore, co-founder of Intel Corporation,
who described the trend in his 1965 paper.” (See Wikipedia Article on Moore’s
Law). We can track the size of integrated circuits over a number of years. Below
you’ll find a data table that does exactly this task.

We can graph this data and we notice that the growth in numbers of transistors
on Intel chips seems to fit an exponential curve:

In this case, we want to model our data using an exponential model

y(x) = a0e a1 x.

However, we cannot achieve such a model directly through least squares because
the two unknowns a0 and a1 are not linearly related in our equation. One way to
deal with this problem is to use the rules of logarithms that we know and love to
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linearize our problem:

ln(y) = ln (a0e a1 x) ,

= ln(a0) + a1x,

= k + a1x,

where we’ve introduced a new constant k = ln(a0). Now, both unknown coe�cients
k, a1 are in a linear model and were back to solving problems using the linear
regression. We can solve the related matrix equation

Ax = b

to find paramaters k and a1. To translate our solution into the corresponding
exponential model, we will simply use the translation a0 = ek.
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Definition 10.1: Vandermonde Matrix for Polynomial Interpo-
lation

Given the m data points collected above {xi, yi}m

i=1, we can approximate
this data using an nth degree polynomial in the form

y(x) = a0 + a1x + a2x2 + · · · + anxn

by solving a least squares problem. The total least squares error between
the data and the sample values of the function is equal to

ÎeÎ2
2 =

mÿ

i=1
[yi ≠ y(xi)]2 = Îy ≠ AxÎ2

2

where

A =

S

WWWU

1 x1 x2
1 · · · xn

1
1 x2 x2

2 · · · xn

2
...

...
...

. . .
...

1 xm x2
m

· · · xn

m

T

XXXV
, x =

S

WWWWWU

a0
a1
a2
...

an

T

XXXXXV
, y =

S

WWWU

y1
y2
...

ym

T

XXXV

Here, the matrix A is known as the m ◊ n + 1 Vandermonde matrix.
If m = n + 1, then A is square. Assuming A is invertible in this case,
we can solve Ax = y exactly. In the case where m > n + 1, we will not
get an exact interpolating polynomial. Instead, we will get the best fit
polynomial.
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Definition 10.2: Generalized Vandermonde Matrix

Given the m data points collected above {xi, yi}m

i=1, we do not have to
try to fit our data to a polynomial. Instead, suppose we want to fit our
data using a linear combinations of functions of our choosing. In other
words, suppose we choose functions h1(x), h2(x), ..., hn(x) and we want to
model our data in the form

y(x) = a1f1x + a2f2(x) + · · · + anfn(x).

Again, we can do this by solving a least squares problem. The total least
squares error between the data and the sample values of the function is
equal to

ÎeÎ2
2 =

mÿ

i=1
[yi ≠ y(xi)]2 = Îy ≠ AxÎ2

2

where

A =

S

WWWU

f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xm) f2(xm) · · · fn(xm)

T

XXXV
, x =

S

WWWU

a1
a2
...

an

T

XXXV
, y =

S

WWWU

y1
y2
...

ym

T

XXXV
.

A particularly important case is provided by the 2n + 1 trigonometric functions

f1(x) = 1,

f2(x) = cos(x), f3(x) = sin(x),

f4(x) = cos(2x), f5(x) = sin(2x),

...
...

f2n(x) = cos(nx), f2n+1(x) = sin(nx).

Interpolation on 2n + 1 equally spaced data points on the interval [0, 2fi] leads to
the famous Discrete Fourier Transform, used in signal processing, data transmission
and compression and many other application areas.
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Definition 10.3: The Least Squares Problem

Suppose A œ Rm◊n with m > n and b œ Rm. The least squares prob-
lem is to find the vector x̂ œ Rn such that ÎAx̂≠bÎ2 achieves a minimum
value. In other words, we want to find x̂ œ Rn such that

ÎAx̂ ≠ bÎ2 Æ ÎAx ≠ bÎ2

for all x œ Rn. Assuming we can find such a vector x̂, we call this vector
the least squares solution of Ax = b.

Theorem 41: The Normal Equation to Solve the Least Squares
Problem

The set of least-squares solutions of Ax = b coincides with the nonempty
set of solutions of the normal equations:

AT Ax = AT b.

Theorem 42: The Solution to the Normal Equation

Let A œ Rm◊n. The following statements are equivalent:

a. Equation Ax = b has a unique least-squares solution for all b œ Rm.

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.

When these statements are true, the least-squares solution x̂ is given by

x̂ = (AT A)≠1 AT b.
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