
Definition 9.1: Vector Space

A vector space is a nonempty set V of objects, called vectors, equipped
with two operations:

i. Vector addition:

Adding any pair of vectors v, w œ V gives another vector
v + w œ V
(closed under vector addition)

ii. Scalar multiplication:

Multiplying any vector v œ V by a scalar c œ R gives
another vector cv œ V
(closed under scalar multiplication)

For a space to be a vector space, the two operations listed above must
satisfy a number of properties. In particular, for all u, v, w œ V and
scalars c, d œ R, we must have:

1. Commutativity of vector addition: u + v = v + u.

2. Associativity of vector addition: (u + v) + w = u + (v + w).

3. Additive identity: There is a zero element 0 œ V such that

u + 0 = u = 0 + u.

4. Additive inverse: For each u œ V there is a ≠u œ V such that

u + (≠u) = 0 = (≠u) + u.

5. Distributivity over vector addition: c(u + v) = cu + cv.

6. Distributivity over scalar addition: (c + d)u = cu + du.

7. Associativity of scalar multiplication: c(du) = (cd)u.

8. Multiplicative identity of scalar multiplication: the scalar 1 œ R
satisfies 1u = u.
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EXAMPLE 9.1.1
The quintessential example of a real vector space is the set Rm equipped with
vector addition and scalar multiplication we defined previously. In particular, for
x, y œ Rn, we define

x + y =

S

WWWU

x1 + y1
x2 + y2

...
xm + ym

T

XXXV
, cx

S

WWWU

cx1
cx2

...
cxm

T

XXXV
.

The zero vector 0 œ Rm is the m ◊ 1 column vector with all zero entries. Moreover,
we confirmed that Rn satisfies all of the algebraic properties in Theorem 9 during
our discussion of vector operations. Notice, we do not consider the multiplication
between vectors (inner products) when studying the vector space Rn. This is a
general theme of all vector spaces: we focus only on vector-vector addition and
scalar-vector multiplication in our study of vector spaces. Any other operations
between vectors may be helpful for solving problems but no other operations is part
to the definition of general vector spaces.

EXAMPLE 9.1.2
Recall Rm◊n denotes the set of all m ◊ n matrices with real-valued entries. Given
the operations of matrix addition and scalar-matrix multiplication, we confirm that
Rm◊n forms a real vector space. The zero “vector” of this space is the zero matrix

0 =

S

WU
0 · · · 0
... . . . ...
0 · · · 0

T

XV

Notice that Rm Rm◊1 is a special case of a vector space of matrices with 1 column.
Once again, we do not consider matrix-matrix multiplication when studying the
vector space Rm◊n. Instead, we focus only on matrix addition and scalar-matrix
multiplication.

As we have seen, our solutions to the matrix-vector multiplication problem and
the linear-systems problem depend heavily on arithmetic. These problems, and
their solutions, very much depend on the algebra of vectors spaces Rm◊n and Rn.
We very much value this reliance because large-scale computers can very accurately
execute addition and multiplication in these spaces. Thus, as long as we study the
properties of these vectors spaces and maps between these vectors spaces, we can
generate programmable algorithms for computer execution. This then enables us
to solve any problem from these classes using computers. This is a very powerful
tool to have in our tool bag.

However, as we will see, not all problems can be stated as either matrix-vector
multiplication problems or linear-systems problems. In particular, there is a huge
class of problems that require more sophisticated technology to state and solve. In
fact, many problems from the fields of di�erential equations, numerical methods,
and Fourier analysis depend on vectors spaces of functions. The di�erence between
Rm◊n and a vector space of functions V is analogous to the di�erence between
arithmetic and calculus. In arithmetic, we are studying the algebraic properties of
addition and multiplication of numbers. By contrast, in calculus, we are studying
properties of functions and continuity. We pass from the discrete into the continu-
ous, increasing capacity at the cost of simplicity.

245 c• Je�rey A. Anderson



From this standpoint, we begin our departure from the world of matrices and
begin our ascent to the world of functions. Our goal is to develop a number of
useful vector spaces of functions that we can then use to solve di�erential equations,
approximate noisy data and interpolate sampled data points. We will use this
functionality to solve least-squares problems and eigenvalue problems which arise
in mathematical modeling processes.
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EXAMPLE 9.1.3
Recall from our discussion of Important Sets of Functions, we defined

Pn(I) = {f : f : I æ R and f is a polynomial with deg (f) Æ n for n œ N}

where I ™ R. As we will see, this space forms a vector space under the operation
of polynomial addition and scalar-polynomial multiplication. Let f, g œ Pn(I). By
definition, we know

f(x) = anxn + an≠1xn≠1 + · · · + a1x + a0,

g(x) = bnxn + bn≠1xn≠1 + · · · + b1x + b0.

where ai, bi œ R for all i = 1, 2, ..., n. Then, we define the polynomial addition for
this vector space as follows

f + g = (an + bn)xn + (an≠1 + bn≠1)xn≠1 + · · · + (a1 + b1)x + (a0 + b0)

We confirm that the sum of polynomials f(x) and g(x) has degree Æ n and thus
Pn(I) is closed under polynomial addition. We can also define scalar-polynomial
multiplication. For f œ Pn(I) and c œ R, we set

c · f = (can)xn + (can≠1)xn≠1 + · · · + (ca1)x + ca0

which is a polynomial of degree Æ n.
Using the definition of the set Pn(I) and our operations of polynomial addition

and scalar-polynomial multiplication, we can verify the 8 algebraic axioms of vectors
spaces. By doing so, we confirm that Pn(I) is indeed a vector space.

Remarks:

• The set of polynomials of degree exactly equal to n is not a vector space.
Indeed, consider the following counter example:

(x2 + 3x + 4)¸ ˚˙ ˝
f(x)

+ (2 ≠ x2)¸ ˚˙ ˝
g(x)

= 3x + 6

Here, we add two polynomials of degree equal to 2 and produce a polynomial
of degree 1. Thus, the set of polynomials of degree equal to 2 is not closed
under polynomial addition. By extension, this same statement is true for the
set of polynomials equal to n.

• Be very careful with notation. The di�erence between scalars and constant
polynomials is substantial and important. However, the notation we use is
identical. For example the zero polynomial is denotes as f = 0 while zero as a
real number is given as 0. The first of these represents the constant function
whose output value is 0 for all x œ I. The second denotes one number 0.

• When we talk about Pn(I) as a vector space, we refer to each of the elements
of this set as vectors. In other words, from the context of vector spaces,
polynomials are considered vectors. This is a major paradigm shift in this
textbook. Prior to this chapter, our entire discussion of vectors has a very
specific meaning: vectors were organized lists of real numbers. However, from
this point forward, we generalize our definition of vectors. In this context,
vectors are simply elements of vector spaces. Thus, for Pn(I), vectors are
functions.
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Theorem 37: Algebraic Identities for Vectors Spaces

The following identities are consequences of the properties above:

I. 0u = 0:

II. ≠u = ≠1u:

III. c 0 = 0:

IV. If c v = v, then either c = 0 or v = 0.

Proof. Let V be a vector space over R. Let’s begin with the first proposition. To
this end, let u œ V . We want to show 0 · u = 0. To this end, let v = 0 · u and
consider

v + v = 0 · u + 0 · u

= (0 + 0) · u

= 0 · u

= v

However, since v œ V , we know ≠v œ V and we can consider

v + v + ≠v = v + ≠v =∆ v = 0

This is what we wanted to show.
Next, let’s show that ≠1 ·u = ≠u. To this end, let ≠1 œ R and u œ V . Consider

(1 + ≠1) · u = 0 · u = 0

However, we know by distributivity over scalar addition that

(1 + ≠1) · u = 1 · u + ≠1 · u

= u + ≠1 · u

where the second line results from the multiplicative identity property of scalar
multiplication. Thus, combining these together we have

u + ≠1 · u = 0

Since u œ V , we know there exists an additive inverse ≠u œ V . Then, consider

≠u + u + ≠1 · u = ≠u + 0 =∆ ≠1 · u = ≠u

This is what we wanted to establish.
Finally, let’s establish c · 0 = 0 for any c œ R. To this end, let c œ R and let

0 œ V be the zero vector. Consider

c · 0 = c · (0 + 0)

= c · 0 + c · 0
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Since c · 0 œ V , so too is it’s additive inverse ≠c · 0. We can consider

c · 0 + ≠c · 0 = c · 0 + c · 0 + ≠c · 0

=∆ (c + ≠c) · 0 = c · 0

=∆ 0 · 0 = c · 0

=∆ 0 = c · 0

This is what we needed to show.

The fourth part of the proof for the theorem above is left to the reader as an
exercise.
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Definition 9.2: Vector Space

A subspace of a vector space V is a nonempty set W ™ V that has
three properties:

i. Zero vector : 0 œ W .

ii. Closed under vector addition: For each u, v œ W , the sum u + v œ
H.

iii. Closed under scalar multiplication: For each u œ W and each scalar
c œ R, the vector cu œ W .

Theorem 38: Check for Subspace: Option 1

A non-empty subset W ™ V of a vector space V is a subspace if and only
if

a. for every u, v œ W , the sum u + v œ W and

b. for every u œ W and every c œ R, the scalar product cu œ W .

Theorem 39: Check for Subspace: Option 2

A non-empty subset W ™ V of a vector space V is a subspace if and only
if

a. for every u, v œ W and c, d œ R, the sum c u + d v œ W .

Theorem 40: Spans form Subspaces

If v1, v2, ..., vp are vectors in a vector space V , then the span of these
vectors

Span{v1, v2, ..., vp} = {c1v1 + c2v2 + · · · + cpcp : ci œ R for all i œ {1, 2, ..., p}}
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Lesson 18: Vector Spaces- Suggested Problems

1. Exercise 4.1.1 p. 195

2. Exercise 4.1.2 p. 195-196

3. Exercise 4.1.5 p. 196

4. Exercise 4.1.6 p. 196

5. Exercise 4.1.9 p. 196

6. Exercise 4.1.13 p. 196

7. Exercise 4.1.20 p. 196

8. Exercise 4.1.21 p. 196

Lesson 18: Vector Spaces- Challenge Problems

1. Exercise 4.1.19 p. 196

2. Exercise 4.1.33 p. 197

3. Exercise 4.1.37 p. 198

4. Exercise 4.1.38 p. 198

251 c• Je�rey A. Anderson


