
www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

LANA Example 2: Algorithm Implementation
on a Circuit with 8 Resistors, 2 Voltage Sources, 2 Current Sources

Example 2: Ideal schematic diagram
In this document, we use the Linear-Algebraic Nodal Analysis (LANA) algorithm to analyze an electric
circuit that includes eight 1kΩ resistors, two 5V dc voltage sources, and two 2.5mA dc current sources.
Figure 1 is an ideal circuit diagram that provides a complete description of this circuit.

Figure 1: An ideal schematic diagram of a circuit containing eight resistors, two dc voltage
sources, and two dc current sources.

To run the LANA algorithm, we follow the seven steps as outlined in either the Quick reference guide or
the Step-by-step guide to the LANA algorithm. The title of each (sub)section in this document corresponds
to a unique (sub)step in the LANA algorithm. In this work, we share entry-by-entry definitions for many
of the matrices and equations used to model the circuit given in Figure 1. The goal of this effort is to help
the reader check their work while becoming more familiar with both the block-matrix and entry-by-entry
definitions used in this algorithm.

Step 1: Identify and label all circuit nodes
We start our work in the LANA algorithm by explicitly identifying and enumerating the individual nodes of
our ideal circuit. To do so, we use the node identification heuristic in which we erase the bodies of all ideal
circuit elements and leave only the leads. The remaining, contiguous segments of conductor are known as
the nodes of the circuit. In Figure 2 below, we redraw our ideal circuit schematic diagram from Figure 1
using this node identification heuristic. We then count and enumerate the nodes of this circuit using positive
integers. In this example, we see our circuit has seven nodes.

Figure 2: The skeleton circuit of contiguous wire segments that results from the node identification
heuristic applied to the circuit from Figure 1. Notice the body of each circuit element is replaced
with a blank space.

c© Jeffrey A. Anderson 1 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 2: Model the circuit using a directed graph
The second step in the LANA algorithm is to represent the topology of our circuit as a directed graph
G = (N , E). We should check that we have a complete description of a circuit that contains only resistors,
dc voltage sources, and dc current sources. The circuit presented in Figure 1 meets these specifications.

Step 2A: Track the dimensions of key features in our circuit

The nodes of our digraph correspond to the circuit nodes and represent the interconnections between the
circuit elements. For this specific example, we see the set of digraph nodes is given as

N = {1, 2, 3, 4, 5, 6, 7}.

The positive integer ng ∈ N denotes the number of elements in set N . In this example, ng = 7 since we
identified and enumerated 7 nodes in step 1 of the algorithm.

Next, we replace each circuit element with a directed edge in our digraph model. We write each edge
e ∈ E as an ordered pair of nodes with E ⊂ N × N . The direction of edge e = (2, 1) goes from node 2 to
node 1. In other words, we say that edge e = (2, 1) leaves node 2 and enters node 1.

The variable m ∈ N represents the total number of edges in our graph. Because each edge of our digraph
corresponds to a single circuit element, the number of edges equals the number of circuit elements. To count
the edges, we sum of the number of resistors, denoted as mr ∈ N, the number of dc voltage sources, denoted
as a nonnegative integer mv ∈ Z, and the number of dc current sources, denoted as a nonnegative integer
mi ∈ Z. Mathematically, we write

m = mr + mv + mi.

As we see in Figure 1, there are a total of mr = 8 resistors, mv = 2 dc voltage sources, and mi = 2 current
sources. Accordingly, our directed graph model of this circuit has m = 12 edges.

Step 2B: Orient and enumerate the edges of the digraph

We choose the direction of each edge in our digraph using some knowledge of electronics. Specifically, we
orient each edge associated with a dc current source in the same direction as the current flow provided
by that source. The reference direction of each edge corresponding to a dc voltage source points from the
positive “+” lead to the negative “-” lead of that source. Finally, we assign arbitrary directions to all edges
corresponding to current flowing through the resistors.

We choose a special enumeration scheme for the edges of our circuit. First we count and label all edges
corresponding to resistors as edges e1, e2, ..., emr . We continue our edge count by labeling the edges associated
with the voltage sources, yielding edges emr+1, ..., emr+mv . Finally, we enumerate our edges corresponding
to current sources, producing edges emr+mv+1, ..., em. The only condition required in each count is that we
have a bijection between circuit elements and graph edges. Although no specific sub-ordering is necessary,
we recommend counting from top to bottom, left to right whenever possible.

By enumerating our edges using these guidelines, we enable a useful partition of the matrices and vectors
that model our circuit. Figure 3 below combines our rules for drawing directed edges with the enumeration
scheme to produce a visual representation of the digraph model for our electric circuit from Figure 1. If we
want to write our choice of edges in set notation, we state that

E = { (1, 7)︸ ︷︷ ︸
e1

, (2, 1)︸ ︷︷ ︸
e2

, (2, 7)︸ ︷︷ ︸
e3

, (2, 3)︸ ︷︷ ︸
e4

, (3, 6)︸ ︷︷ ︸
e5

, (6, 7)︸ ︷︷ ︸
e6

, (3, 4)︸ ︷︷ ︸
e7

, (5, 6)︸ ︷︷ ︸
e8

, (2, 7)︸ ︷︷ ︸
e9

, (4, 5)︸ ︷︷ ︸
e10

, (4, 2)︸ ︷︷ ︸
e11

, (7, 5)︸ ︷︷ ︸
e12

}.

c© Jeffrey A. Anderson 2 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 2C: Draw a directed graph model of the circuit.

Using the guidelines provided above, we draw a digraph model of our circuit, seen in Figure 3.

Figure 3: A digraph model for the example circuit in Figure 1 with ideal circuit elements replaced
by directed edges using the enumeration and direction conventions described in step 2B above.

Step 3: Create all circuit matrices
In step three of the LANA algorithm we create all matrices used to model the behavior of our circuit. These
include the entire incidence matrix Ag, the vector of node voltage potentials ug, the voltage-drop vector v,
and the current vector i.

Step 3A: Create the entire incidence matrix

The entire incidence matrix captures the connectivity of the nodes in directed graph model of the circuit.
The entry-by-entry definition of the entire incidence matrix Ag ∈ Rm×ng is given by

ajk =

 1 if edge ej leaves node k,
−1 if edge ej enters node k,

0 otherwise,

for j = 1, 2, ...,m and k = 1, 2, ..., ng. We see that the rows and columns of this matrix correspond to the
edges and the nodes of our digraph, respectively. Below we set up this entire incidence matrix including our
desired subblock partitions based on element type:

Ag =

Arg

Avg

Aig

=

1 0 0 0 0 0 −1
−1 1 0 0 0 0 0

0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
0 1 0 0 0 0 −1
0 0 0 1 −1 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1

where Arg ∈ Rmr×ng , Avg ∈ Rmv×ng , and Aig ∈ Rmi×ng . When defining the block partitions of any matrix
or vector in our modeling scheme, we us subscripts r, v, and i denote the subblocks corresponding to digraph
edges that encode resistors, voltage sources, and current sources, respectively.

c© Jeffrey A. Anderson 3 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 3B: Create the node voltage potential vector

From step 1 of our algorithm, we know this there are ng = 7 distinct nodes in this circuit. We create a
vector ug ∈ Rng of node voltage potentials given by

ug =

u1

u2

u3

u4

u5

u6

u7

=

the voltage potential of node 1
the voltage potential of node 2
the voltage potential of node 3
the voltage potential of node 4
the voltage potential of node 5
the voltage potential of node 6
the voltage potential of node 7

As described below in step 6 of the LANA algorithm, we designate a datum node d ∈ N , also called the
ground node, and set the corresponding voltage potential ud = 0. However, in this early stage of our modeling
process, we include all node voltage potentials in the vector ug. The subscript g means that the ground node
voltage potential is still included in the model and has yet to be set to zero.

Step 3C: Create the voltage drop vector

Next, we create vector v ∈ Rm that stores the voltage drop across each element, with

v =

vr

vv

vi

=

v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12

=

the voltage drop across resistor 1
the voltage drop across resistor 2
the voltage drop across resistor 3
the voltage drop across resistor 4
the voltage drop across resistor 5
the voltage drop across resistor 6
the voltage drop across resistor 7
the voltage drop across resistor 8

the voltage drop across voltage source 1
the voltage drop across voltage source 2
the voltage drop across current source 1
the voltage drop across current source 2

where vr ∈ Rmr , vv ∈ Rmv , and vi ∈ Rmi . Since we calculate one voltage drop across each element and
there are precisely m = 12 elements in our circuit, we know there are exactly 12 entries in this vector. Due
to our chosen strategy for enumerating the edges, the vector v lists all voltage drops across the resistors
followed by the voltage drops across the voltage sources and ending with voltage drops across the current
sources. The stated partition of v includes subblocks vr,vv,vi that follow from this ordering.

Step 3D: Create the current vector

Finally, we create vector i ∈ Rm to store the current running through each element, given by

i =

ir

iv

ii

=

i1
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12

=

the current through resistor 1
the current through resistor 2
the current through resistor 3
the current through resistor 4
the current through resistor 5
the current through resistor 6
the current through resistor 7
the current through resistor 8

the current through voltage source 1
the current through voltage source 2
the current through current source 1
the current through current source 2

c© Jeffrey A. Anderson 4 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

where ir ∈ Rmr , iv ∈ Rmv , and ii ∈ Rmi . Since we calculate one current through each element in our circuit
and since there are precisely 12 branches in this example network, we know there are exactly 12 entries in
this vector. Again, using the same convention, we list all currents through the resistors first, followed by the
currents through the voltage sources, and finally the currents through the current sources.

A count of variables

Notice that not all the scalar entries of the vectors v, i ∈ Rm are unknown variables. Specifically, the vectors
vv and ii store known constants defined by the voltage and current levels provided by the independent
sources we use to power our physical circuit. In this example, the assigned values for each dc voltage source
in Figure 1 indicate that

vv =

[
vv1
vv2

]
=

[
v9
v10

]
=

[
5
5

]
.

For j = 1, ...,mv, we say that vvj represents the assigned voltage value of the jth dc voltage source Vj in our
circuit, where these constants are measured in volts. Using the same reasoning, we know that

ii =

[
ii1
ii2

]
=

[
i11
i12

]
=

[
2.5
2.5

]
.

For j = 1, ...,mi, we say that iij represents the assigned current running through the jth dc current source
Ij in our circuit, as measured in milliamps.

To completely analyze the circuit at this point, the number of unknown variables remaining is

` = 2 mr + mv + mi + ng.

Directly solving a system involving this many unknowns is computationally expensive. Thus, in steps 4 – 6
of the LANA algorithm, we simplify our analysis problem by imposing constraints amongst the ` unknowns
to produce a minimal set of n variables from which all other values can be calculated. For the circuit in
Figure 1, this yields a reduction from ` = 27 to n = 4 variables.

Optional Extension to Step 3: Label all variables and reference directions

One unnecessary but illuminating is to redraw the ideal circuit model and explicitly label unknown variables
for every circuit element, as seen in Figure 4 below. This includes reference directions for the voltage drop
across and the current running through each element. Notice that these reference directions follow the
conventions outlined in step 2B above and also conform to the passive sign convention in which the current
arrow points from positive to negative.

Figure 4: Redrawn Ideal Circuit Schematic Diagram with all variables labeled.

c© Jeffrey A. Anderson 5 of 13

http://www.appliedlinearalgebra.com
https://en.wikipedia.org/wiki/Passive_sign_convention

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 4: State the entire set of circuit equations
The fourth step of the LANA algorithm is to state the entire set of circuit equations which come from Kirch-
hoff’s current laws (KCLs), branch constitutive relations (BCRs), and Kirchhoff’s voltage laws (KVLs). By
combining these equations together, we achieve the first of two different reductions processes that eventually
result in our minimal set of unknown circuit variables.

Step 4A: State the entire set of Kirchoff’s current laws (KCLs)

We crafting our circuit equations by stating the entire set of KCLs as

AT
g i = 0 ⇔

[
AT

rg AT
vg

AT
ig

] ir
iv
ii

 = 0 (1)

Since both Ag and i are block partitioned matrices, we can restate our KCL’s as

AT
rg · ir + AT

vg · iv + AT
ig · ii = 0

The vector ii is a known and we bring this term on the right-hand side yielding

AT
rg ir + AT

vg iv = −AT
ig ii, (2)

where ir and iv are two unknown quantities to be reduced. The entry-by-entry form of our KCLs is given by
1 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 1 0 −1

−1 0 −1 0 0 −1 0 0

i1
i2
i3
i4
i5
i6
i7
i8

+

0 0
1 0
0 0
0 1
0 −1
0 0

−1 0

[i9
i10

]
= −

0 0

−1 0
0 0
1 0
0 −1
0 0
0 1

[i11
i12

]

Recall that for the entire incidence matrix Ag, each column corresponds to the nodes of our circuit while the
rows correspond to the circuit elements. The KCL equations are written using the transpose of Ag which
swaps rows and columns. Thus, each row of the KCL matrix equation (1) encodes the sum of all currents
that enter and leave the corresponding node.

Step 5B: State the branch constituent relations (BCRs)

To eliminate explicit reference to the ir vector in the matrix KCL equation (2), we use branch constitutive
relations (BCRs). For resistive networks, the BCRs come in the form of Ohm’s law which describes a linear
relationship between the current flowing through and the voltage drop across a resistor. We capture this
information for all resistors in the circuit using a matrix equation via either the resistance or conductance
form given by

vr = R ir or ir = Gvr. (3)

The resistance matrix R ∈ Rmr×mr is a diagonal matrix with the appropriate resistance values in each
diagonal entry so that vk = rk ik for k = 1, 2, ...,mr. The kth resistor Rk has positive resistance value rk > 0
and we can rewrite Ohm’s law equations in conductance form, where the conductance matrix G = R−1 is a
diagonal and the main diagonal entries are defined by the conductances gk = 1/rk.

c© Jeffrey A. Anderson 6 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

In our example circuit, we have

ir = Gvr ⇔

i1
i2
i3
i4
i5
i6
i7
i8

 =

g1 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0
0 0 g3 0 0 0 0 0
0 0 0 g4 0 0 0 0
0 0 0 0 g5 0 0 0
0 0 0 0 0 g6 0 0
0 0 0 0 0 0 g7 0
0 0 0 0 0 0 0 g8

v1
v2
v3
v4
v5
v6
v7
v8

 (4)

Since we want to replace ir in the sublock KCL equations (2), we rely on the conductance form involving
matrix G. This yields the partially reduced equation

AT
rgGvr + AT

vg iv = −AT
ig ii. (5)

From here, we further simplify our work by identifying the relationship between the voltage drop vector vr

and node potential vector ug.

Step 4C: State the entire set of Kirchoff’s voltage laws (KVLs)

To connect the voltage drop and node potential variables, we use Kirchhoff’s voltage laws (KVLs) in node
potential form. These equations state that the voltage drop across each two-terminal element is calculated
by the difference between the node voltage potentials at each terminal. Because the topology of our circuit
is encoded in the entire incidence matrix Ag, we write the KVLs in matrix form as

Ag ug = v ⇔

 Arg ug

Avg ug

Aig ug

 =

 vr

vv

vi

Using the subblock partitions of the incidence matrix Ag and voltage drop vector v, we state the element-
specific KVLs. We begin with the entire set of resistor KVLs given by

Arg ug = vr ⇔

1 0 0 0 0 0 −1

−1 1 0 0 0 0 0
0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0

u1

u2

u3

u4

u5

u6

u7

 =

v1
v2
v3
v4
v5
v6
v7
v8

 (6)

The second subblock equation is the entire set of voltage source KVLs in node potential form given by

Avg ug = vv ⇔
[

0 1 0 0 0 0 −1
0 0 0 1 −1 0 0

]
u1

u2

u3

u4

u5

u6

u7

 =
[
v9

v10

]
=
[
vv1
vv2

]
. (7)

This equation is a general linear-systems problem with a known right-hand side. We return to this problem
in steps 5 and 6 of our algorithm. Finally, the entire set of current-source KVLs are given by

Aig ug = vi ⇔
[

0 −1 0 1 0 0 0
0 0 0 0 −1 0 1

]
u1

u2

u3

u4

u5

u6

u7

 =
[
v11
v12

]
. (8)

The matrix form of our KVL equations show that matrix-vector multiplication produces the values of vr

and vi based on the entries of the vector ug.

c© Jeffrey A. Anderson 7 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 4D: Combine the circuit equations

Using the resistor KVLs (6), we replace vector vr in the partially reduced equation (5) with Argug yielding

AT
rgGArgug + AT

vg iv = −AT
ig ii. (9)

In producing this reduced system, we have two categories of data as shown in Table 1 below.

Known quantities Unknown quantities

Arg , Avg , Aig , G, vv, ii ug, iv

Table 1: Known and unknown quantities

By combing the KCLs, BCRs, and KVLs together, we decrease the initial ` unknown variables to a smaller
set of (ng + mv) unknowns. For the circuit in Figure 1, this reduces ` = 27 to (ng + mv) = 9 variables.
We further reduce the number of variables needed to analyze the circuit by identifying constraints within
the remaining unknown variables.

Step 5: Identify the ordinary and generalized nodes
Our next step is to determine the ordinary and generalized nodes of the circuit. We define an ordinary node
of our system as a single circuit node to which no voltage source is connected. A generalized node in our
system is a set of individual circuit nodes that are connected together by dc voltage sources.

To identify ordinary and generalized nodes, we use the deactivated circuit heuristic in which we deactivate
the power sources by setting the value of each independent source to zero. This is equivalent to replacing
each current source with an open circuit. Analogously, we replace each voltage source with a short circuit.
When we apply this heuristic to the example circuit in Figure 1, we create the deactivated resistor network
seen in Figure 4 below.

Figure 5: The deactivated resistor network for the example from Figure 1. Deactivation involves
replacing each voltage source with a short circuit and each current source with an open circuit.

When we deactivate the circuit, a set of nodes that are linked via voltage sources meld together to form
a single generalized node. Table 2 below presents these node classifications for the circuit in Figure 1.

Node Classification Set of node indices Node variables
Ordinary nodes {1}, {3}, {6} u1, u3, u6

Generalized node 1 {4, 5} u4, u5

Generalized node 2 {2, 7} u2, u7

Table 2: Classification of ordinary and generalized nodes

c© Jeffrey A. Anderson 8 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

The deactivated circuit heuristic is useful not only to identify ordinary and generalized nodes but also
to elucidate key connectivity features within the circuit. The process of deactivating each voltage source
merges two nodes together thus eliminating mv nodes from the original circuit. In contrast, deactivating the
current sources does not change the number of nodes. What is left after the deactivation process is a circuit
containing only resistors that are linked together via a reduced set of (ng −mv) nodes.

Step 6: Create a minimal set of independent node potentials
The LANA algorithm uses linear algebra to reduce the vector ug to a minimal set of independent node
variables from which all other quantities in the circuit can be calculated. To achieve this reduction, we
partition the entries of ug into two lists. The first list of constrained variables includes one node potential
variable for each voltage source and exactly one additional variable for our chosen ground node. The
second list of independent variables are the chosen node voltage potentials that remain after eliminating the
constrained quantities.

To impose the (mv + 1) constraints, we look at two features of our modeling problem. The first set of
constraints is encoded in the voltage-source KVLs (7) which form a linear-systems problem since the vector
vv on the right-hand side has known entries. This voltage source general linear-systems problem encodes
mv restrictions amongst the entries of ug. The second type of constraint relates to our choice of ground
node. To ground our circuit, we pick a reference node and set one entry of the vector ug to zero. By
partitioning the entries of ug in this way, we create a minimal list u ∈ Rn of independent node variables,
where n = (ng −mv − 1). To reduce ug down to u, we can first impose the voltage-source constraints and
then choose a ground node from the remaining variables.

Step 6A: Impose one constraint for each voltage source

The voltage source KVLs (7) come in both matrix and scalar forms. For the example circuit in Figure 1, we
use the matrix form to produce the scalar form with

Avg ug = vv ⇔
[
u2 − u7

u4 − u5

]
=

[
vv1
vv2

]
=

[
5.0
5.0

]
(10)

We now search for a complete solution with (ng −mv) free variables and mv constraints. Since we have a
choice of two different free variables for each voltage source, we have a total of 2mv different ways to produce
a complete solution.

Let’s look at one such choice for our example circuit. For the first generalized node, if we choose u7 as
the free variable, then u2 = u7 + vv1 . For the second generalized node, if we choose u4 as the free variable,
then u5 = u4 − vv2 . The resulting complete solution to the voltage-source KVLs (7) is

u1

u2

u3

u4

u5

u6

u7

︸ ︷︷ ︸
ug

=

u1

u7 + vv1
u3

u4

u4 − vv2
u6

u7

 =

0
vv1
0
0

−vv2
0
0

︸ ︷︷ ︸

pg

+

1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

︸ ︷︷ ︸

Zvg

u1

u3

u4

u6

u7

︸ ︷︷ ︸
uf

(11)

No matter what choice we make for the free variables, we can always produce a complete solution to the
voltage-source KVLs (7) in the form

ug = pg + Zvguf (12)

where pg ∈ Rng is a particular solution, the columns of Zvg ∈ Rng×nf form a basis for Nul(Avg), the
dimension nf = ng −mv represents the number of free variables from the voltage-source KVL equation (7),
and uf ∈ Rnf is the vector of free variables.

c© Jeffrey A. Anderson 9 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 6B: Impose one constraint for the ground node

To impose the final constraint and produce our minimal list of independent node potentials, we choose a single
ground node from the remaining (ng−mv) free variables. As described in step 6A above, let’s assume that we
chose free variables u7 and u4 for generalized nodes 1 and 2, respectively. This leaves five independent node
potential variables which are u1, u3, u4, u6 and u7. We designate any of these remaining nodes as ground.
The moment we choose ground, we shift the corresponding entry of the vector uf from unknown to known.
This permits a dimension reduction realized using multiplication with a matrix Df0 ∈ Rnf×n where

n = nf − 1 = (ng −mv)− 1

is a nonnegative integer representing the minimum number of node voltage potentials needed to completely
analyze the circuit. The form the matrix Df0 , we take the nf × nf identity matrix and delete the column
corresponding to our chosen ground node. For example, assume we ground node 7 and set u7 = 0. We
realize this constraint using the matrix equation

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

︸ ︷︷ ︸

DT
f0

u1

u3

u4

u6

u7

︸ ︷︷ ︸
uf

Notice that we have a choice of nf different nodes that we can use as ground.

Step 6C: Combine the constraints together

We refer to this process of strategically deleting columns (or rows) of a matrix as deflation. Similarly, we
say that a deflation matrix is any matrix used to delete or deflate the columns (or rows) of another matrix.
No matter which node we ground, we use the deflation matrix Df0 to define

u = DT
f0 uf and Z = Zvg Df0 . (13)

After grounding the circuit, we form a completely reduced solution to the voltage-source KVLs (7) given by

ug = pg + Zu (14)

where the columns of Z ∈ Rng×n are in Nul(Avg) and the vector u ∈ Rn stores the minimal list of independent
variables needed to fully analyze the circuit. This alternative form for the vector ug yields the desired
equilibrium equation for our modeling problem. In this reduction, we define matrices

Ar = ArgZ, AvgZ = 0, and Ai = AigZ. (15)

Step 7A: State the equilibrium equation for the circuit

Looking back at our reduced system (9), we substitute ug with the completely reduced solution (14) and
then multiply the entire equation (9) on the left-hand side by the matrix ZT . This yields the matrix equation

AT
r GAru = AT

r Gb− f , (16)

where b = −Argpg and f = AT
i ii. For almost any circuit that is used in real-world applications, the stiffness

matrix K = AT
r GAr is nonsingular.

c© Jeffrey A. Anderson 10 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Let’s look more closely at the entry-by-entry definition of the stiffness matrix given as

K =

 1 −1 0 0 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 −1

︸ ︷︷ ︸

AT
r

g1 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0
0 0 g3 0 0 0 0 0
0 0 0 g4 0 0 0 0
0 0 0 0 g5 0 0 0
0 0 0 0 0 g6 0 0
0 0 0 0 0 0 g7 0
0 0 0 0 0 0 0 g8

︸ ︷︷ ︸

G

1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 −1
0 0 0 1
0 1 −1 0
0 0 1 −1

︸ ︷︷ ︸

Ar

=

 g1 −g2 0 0 0 0 0 0
0 0 0 −g4 −g5 0 g7 0
0 0 0 0 0 0 −g7 g8
0 0 0 0 −g5 g6 0 −g8

︸ ︷︷ ︸

AT
r G

1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 −1
0 0 0 1
0 1 −1 0
0 0 1 −1

︸ ︷︷ ︸

Ar

=

 g1 + g2 0 0 0
0 g4 + g5 + g7 −g7 −g5
0 −g7 g7 + g8 −g8
0 −g5 −g8 g5 + g6 + g8

︸ ︷︷ ︸

K

The forcing terms on the right-hand side contain information about both the current sources and the effect
of the voltage sources on the system. In particular, we notice that 0

0
ii1 − ii2

0

︸ ︷︷ ︸

f

=

 0 0
0 0
1 −1
0 0

︸ ︷︷ ︸

Ai

[
ii1
ii2

]
︸ ︷︷ ︸
ii

We also see that the voltage sources effect the system with

0
−vv1
−vv1
−vv1

0
0
0

vv2

︸ ︷︷ ︸

b

= −

1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0

︸ ︷︷ ︸

Arg

0
vv1
0
0

−vv2
0
0

︸ ︷︷ ︸

pg

.

To calculate the resulting currents, we see that

g2 vv1
g4 vv1
g8 vv2

−g8 vv2

︸ ︷︷ ︸
AT

r Gb

=

 1 −1 0 0 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 −1

︸ ︷︷ ︸

AT
r

g1 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0
0 0 g3 0 0 0 0 0
0 0 0 g4 0 0 0 0
0 0 0 0 g5 0 0 0
0 0 0 0 0 g6 0 0
0 0 0 0 0 0 g7 0
0 0 0 0 0 0 0 g8

︸ ︷︷ ︸

G

0
−vv1
−vv1
−vv1

0
0
0

vv2

︸ ︷︷ ︸

b

Combining all of these results together, we produce the same system as espoused by the classical nodal
analysis algorithm with g1 + g2 0 0 0

0 g4 + g5 + g7 −g7 −g5
0 −g7 g7 + g8 −g8
0 −g5 −g8 g5 + g6 + g8

︸ ︷︷ ︸

K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

g2 vv1
g4 vv1
g8 vv2

−g8 vv2

︸ ︷︷ ︸
AT

r Gb

−
 0

0
ii1 − ii2

0

︸ ︷︷ ︸

f

c© Jeffrey A. Anderson 11 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

We can transform this equation into numerical form by substituting the exact values for that circuit com-
ponents designated in figure 1 yielding the system

 2 0 0 0
0 3 −1 −1
0 −1 2 −1
0 −1 −1 3

︸ ︷︷ ︸

K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

 5
5
5

−5

︸ ︷︷ ︸

AT
r Gb−f

Step 7B: Solve the equilibrium equation for the circuit

Now we solve our resulting 4×4 system using any method we’d like. Because the whole point of this exercise
is to set ourselves up to take advantage of computer algorithms, let’s use MATLAB to make this easier. On
the companion website for this paper, readers can find a MATLAB script to solve this exact problem.

This example write up is dedicated to learners who may have relatively little coding experience. Thus,
we include the entire solution process for completeness and ease of reference. We begin by transforming our
matrix into upper-triangular form using Gauss transformations:
 2 0 0 0

0 3 −1 −1
0 −1 2 −1
0 −1 −1 3

︸ ︷︷ ︸

K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

 5
5
5

−5

︸ ︷︷ ︸

AT
r Gb−f

⇔
 1 0 0 0

0 1 0 0
0 1/3 1 0
0 1/3 0 1

︸ ︷︷ ︸

L1

 2 0 0 0
0 3 −1 −1
0 −1 2 −1
0 −1 −1 3

︸ ︷︷ ︸

K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

 1 0 0 0
0 1 0 0
0 1/3 1 0
0 1/3 0 1

︸ ︷︷ ︸

L1

 5
5
5

−5

︸ ︷︷ ︸

AT
r Gb−f

⇔
 1 0 0 0

0 1 0 0
0 0 1 0
0 0 4

5 1

︸ ︷︷ ︸

L2

 2 0 0 0
0 3 −1 −1
0 0 5/3 −4/3
0 0 −4/3 8/3

︸ ︷︷ ︸

L1 K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 4

5 1

︸ ︷︷ ︸

L2

 5
5

20/3
−10/3

︸ ︷︷ ︸

L1 (AT
r Gb−f)

⇔
 2 0 0 0

0 3 −1 −1
0 0 5/3 −4/3
0 0 0 8/5

︸ ︷︷ ︸

L2 L1 K

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

 5
5

20/3
2

︸ ︷︷ ︸

L2 L1 (AT
r Gb−f)

Using backward substitution, we see that

u =

u1

u3

u4

u6

 =

2.50
3.75
5.00
1.25

We then substitute this result into the complete reduced solution (14) to see that

u1

u2

u3

u4

u5

u6

u7

︸ ︷︷ ︸

ug

=

0
vv1
0
0
−vv2

0
0

︸ ︷︷ ︸

pg

+

1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

︸ ︷︷ ︸

Z

u1

u3

u4

u6

︸ ︷︷ ︸

u

=

0
5
0
0
−5

0
0

︸ ︷︷ ︸

pg

+

2.50
0.00
3.75
5.00
5.00
1.25
0.00

︸ ︷︷ ︸

Z u

=

2.50
5.00
3.75
5.00
0.00
1.25
0.00

c© Jeffrey A. Anderson 12 of 13

http://www.appliedlinearalgebra.com

www.appliedlinearalgebra.com Version: 10/26/2021 at 11:44:01

Step 7C: Calculate any desired circuit variable values

A very common problem in circuit analysis is to focus on a single circuit variable and find the value of that
variable. One of the really cool features of the LANA algorithm is that, the moment we solve for our node
voltage potential vector ug, we can find the value of any other circuit variable. For example, suppose we
can use the resistor KVLs (6) to find the voltage drop across the resistors. Perhaps we want the current
flowing through any resistor in the entire circuit. We can calculate these values using the the matrix version
of Ohm’s law equation in conductance form (3). The voltage drops across the current sources result from
the current source KVLs (8). On the other hand, the currents running through the voltage sources pose a
slightly more subtle problem. But we have is our KCL equation

AT
vg · iv = −AT

rgGArgug −AT
ig ii.

The left-hand side includes two unknown variables while the right-hand side is completely determined by
our previously stated constants.

Step 7D: Verify node voltage potentials in some other way(s)

Once we produce our ideal solution, we might want to verify our work using some alternate method. We
might use a circuit simulation program like MultiSim or we might prototype the circuit using a solderless
breadboard to take measurements using a digital multimeter. Table 3 below presents results from these
alternative methods of verifying our modeled node voltage potential values.

Node LANA model MultiSim model Physical measurement
Variable values (V) values (V) values (V)

u1 2.50 −2.50 −2.497
u2 5.00 −5.00 −4.980
u3 3.75 −3.75 −3.728
u4 5.00 −5.00 −4.950
u5 0.00 −7.50nV −0.003
u6 1.25 −1.25 −1.241
u7 0.00 −0.00 −0.000

Table 3: Model verification

c© Jeffrey A. Anderson 13 of 13

http://www.appliedlinearalgebra.com
https://www.multisim.com/

