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1. Consider the uninterpreted bit string associated with the hexadecimal string c0de. What decimal value
would be encoded by this bit string represent if we interpreted this number as:

Solution: Before we present solutions to the individual problems listed in each part of this question,
let’s translate the hexadecimal string c0de into a raw, uninterpreted bit string. We focus on the
pertinent rows of the hexadecimal nibble chart provided on page 2 of this exam:

Table 3: Hexadecimal Nibble Chart
4-bit binary Lowercase

Decimal niblbe Hexadecimal
0 0000 0
12 1100 c
13 1101 d
14 1110 e

Then, we translate our four-digit hexadecimal string into a 16-bit binary string as follows:

c 0 d e = 1100 0000 1101 1110.

We can now use this string to respond to each part of this problem.

(1A) an unsigned binary integer?

Solution: Recall that for an (m+1)−bit sequence of binary digits in the form y = bmbm−1...b2b1b0
where each digit bi is either 0 or 1, if we interpreted y as an unsigned binary integer, then we
could write the following sum

y = bm · 2m + bm−1 · 2m−1 + · · ·+ b1 · 21 + b0 · 20 =

m∑
i=0

bi · 2i

For the 16-bit number above, we have (m + 1) = 16 and m = 15. Moreover, we can create a
value box (as seen below) to help compute the interpreted value of our original bit string. To
this end consider

Weight (power) 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Weight (decimal) 32 768 16 384 8 192 4 096 2 048 1 024 512 256 128 64 32 16 8 4 2 1

Bit value 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

Then, using this value Table, we see that our value of our original hexadecimal string via the
unsigned integer interpretation is

( c 0 d e )16 = ( 1100 0000 1101 1110 )2

= 215 + 214 + 27 + 26 + 24 + 23 + 22 + 21

= 32 768 + 16 384 + 128 + 64 + 16 + 8 + 4 + 2

= ( 49 374 )10



(1B) a signed integer in signed-magnitude representation?

Solution: If, on the other hand, we interpret the sequence of (m+1)−bits given by bmbm−1...b2b1b0
as a signed integer encoded using the signed-magnitude representation, then we have a different
map given by

y = (−1)bm ·
(
bm−1 · 2m−1 + · · ·+ b1 · 21 + b0 · 20

)

= (−1)bm︸ ︷︷ ︸
sign

·

(
m−1∑
i=0

bi · 2i
)

︸ ︷︷ ︸
magnitude

For the 16-bit number above, we have (m+ 1) = 16 and m = 15. Once again, we can create a
value box to help compute the interpreted value of our original bit string. To this end consider

Weight (power) (−1)bm 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Weight (decimal) −1 16 384 8 192 4 096 2 048 1 024 512 256 128 64 32 16 8 4 2 1

Bit value 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

Then, using this value Table, we see that our value of our original hexadecimal string via the
signed-magnitude interpretation is

( c 0 d e )16 = ( 1100 0000 1101 1110 )2

= −1×
(
214 + 27 + 26 + 24 + 23 + 22 + 21

)
= −1× (16 384 + 128 + 64 + 16 + 8 + 4 + 2)

= ( −16 606 )10
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(1C) a signed integer in twos complement representation?

Solution: The twos complement interpretation of the (m+1)−bit string given by bmbm−1...b2b1b0
is defined using the following map

y = −bm · 2m +
(
bm−1 · 2m−1 + · · ·+ b1 · 21 + b0 · 20

)

= −bm · 2m +

(
m−1∑
i=0

bi · 2i
)

For the 16-bit number above, we have (m+ 1) = 16 and m = 15. Here we use our value box a
third time to help compute the interpreted value of our original bit string. To this end consider

Weight (power) −215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Weight (decimal) −32 768 16 384 8 192 4 096 2 048 1 024 512 256 128 64 32 16 8 4 2 1

Bit value 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

Then, using this value box, we see that our value of our original hexadecimal string via the
twos complement interpretation is

( c 0 d e )16 = ( 1100 0000 1101 1110 )2

= −215 + 214 + 27 + 26 + 24 + 23 + 22 + 21

= −32 768 + 16 384 + 128 + 64 + 16 + 8 + 4 + 2

= ( −16 162 )10
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(1D) a fixed point number using data class ufixed162(8,8)?

Solution: Let’s move onto our fixed point data formats. Recall that when we spoke about our
(m+ 1)−bit fixed-point representations, we defined a fixed-point data class

x = ufixed2(`,f)(BmBm−1...B2B1B0)

where we imagined dividing the raw, uninterpreted binary word BmBm−1...B2B1B0 stored
in memory into two fields. The first of these fields had `−bits and stored the leading part
of the number to the left of the binary point. The second field had f−bits and stored the
fractional part of the number to the right of the binary point. These fields together formed the
m+ 1 = `+ f bit finite binary expansion. The corresponding finite binary expansion is

x = bi bi−1 ... b2 b1 b0 . b−1 b−2 ... b−f

where bk ∈ {0, 1} for all k ∈ {i, i− 1, ..., 2, 1, 0,−1,−2, ...,−f}. This is an (m+ 1)−bit binary
representation of a rational number, where is m+ 1 = `+ f and ` = i+ 1.. In this case we are
told that ` = f = 16 = m+ 1. Then, we can use this information to interpret our raw binary
string

x = ufixed2(8,8)( 1100 0000 1101 1110 )

= b7 b6 b5 b4 b3 b2 b1 b0 . b−1 b−2 b−3 b−4 b−5 b−6 b−7 b−8

This interpretation gives rise to a value box that we can use to interpret this binary string as
an fixed point number as seen below

Weight (power) 27 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8

Weight (decimal) 128 64 32 16 8 4 2 1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

Bit value 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

Then, using this value box, we see that our value of our original hexadecimal string via the
unsigned fixed-point format is

( c 0 d e )16 = ( 1100 0000 1101 1110 )2

= 27 + 26 + 2−1 + 2−2 + 2−4 + 2−5 + 2−6 + 2−7

= 128 + 64 +
1

2
+

1

4
+

1

16
+

1

32
+

1

64
+

1

128

= ( 192.8671875 )10
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(1E) a half-precision binary16 floating point number with 1 bit for the sign, 5 bits for the biased exponent
(with bias K = 25−1 − 1), and 10 bits for the significand?

Solution: Let’s now interpret our raw bit string as a half-precision floating-point number x

stored using the binary16 data class. In this case, let’s visualize the bit strings that are stored
in memory to represent the values of each of these variables.

Bit string stored for variable x

15 10 0

1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

S
ig

n

Exponent significand

As discussed in the problem statement, we recall that for each variable stored in the binary16

data class, we assign 1 bit for the sign, 5 bits for the biased exponent (with bias K = 25−1−1),
and 10 bits for the significand. We can conver x into a normalized binary number in scientific
notation in the form

x = ± (1.b−1 b−2 b−3 b−4 b−5 b−6 b−7 b−8 b−9 b−10)× 2e.

To this end, let’s first find the exponent value e. We recall the the exponent value is calculated
as

e = u− k = 16− 15 = 1, with u = uint5(10000) = 16

Moreover, we know the value of the significand is given in our bit string. Thus, we see

x = − (1 . 0011 0111 10)× 21

= −10 . 0110 1111 0

= −1× (2 + 2−2 + 2−3 + 2−5 + 2−6 + 2−7 + 2−8)

= −1×
(

2 +
1

4
+

1

8
+

1

32
+

1

64
+

1

128
+

1

256

)

= ( −2.43359375 )10
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2. Consider the following snippet of code:

1 x = single(-219.7);
2 y = +219.7;
3 format hex
4 x, y

Using pen-and-paper analysis, predict the output that MATLAB will produce in the Command Window
after we execute this code. Explain your prediction by specifically highlighting the relevant features of
the single and double data classes. Verify your results by actually running this code in MATLAB.

Solution: Let’s begin this problem by find the exact, infinite repeating binary expansion of our number

x = 219.7 = 219 + 0.7

We start by translating the leading part into a binary integer with

( 219 )10 = 128 + 64 + 16 + 8 + 2 + 1

= 27 + 26 + 24 + 23 + 21 + 20

= ( 1101 1011 )2

To find the binary representation of our fractional part, we use the algorithm we studied in class. To
this end, consider the following sequence of steps:

Step 1: 2 · 0.7 = 1.4 = 0.4 + 1

Step 2: 2 · 0.4 = 0.8 = 0.8 + 0

Step 3: 2 · 0.8 = 1.6 = 0.6 + 1

Step 4: 2 · 0.6 = 1.2 = 0.2 + 1

Step 5: 2 · 0.2 = 0.4 = 0.4 + 0

At the end of step 5, we can repeat steps 2 - 5 at infinitum. Using this conversion, we see

( 0.7 )10 =
(

0.1011 0011 0011 0011
)

2

We confirm this is our value using the geometric series test from Math 1C. Below is that calculation:

0.10110 =
1

2
+

1

23
+

1

24
+

1

27
+

1

28
+

1

211
+

1

212
+ · · ·

=
1

2
+

(
1

23
+

1

27
+

1

211
+ · · ·

)
+

(
1

24
+

1

28
+

1

212
+ · · ·

)

=
1

2
+

∞∑
k=0

1

24k+3
+

∞∑
k=0

1

24k+4
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Solution: We recall that the geometric series states the following:

Geometric Series Test

Let a 6= 0 and let r be a real number with |r| < 1. Then, we conclude that the
corresponding geometric series defined by the sequence of terms ak = a×rk for k ∈ N0

converges with

∞∑
k=0

a r
k

=
a

1− r
.

We focus on each infinite sums in our work above separately. We start by recognizing that:

∞∑
k=0

1

24k+3
=

∞∑
k=0

1

23
· 1

24k
=

∞∑
k=0

1

8
·
[

1

24

]k
=

1/8

1− 1
16

=
1

8
÷ 15

16
=

1

8
· 16

15
=

2

15

∞∑
k=0

1

24k+4
=

∞∑
k=0

1

24
· 1

24k
=

∞∑
k=0

1

16
·
[

1

24

]k
=

1/16

1− 1
16

=
1

16
÷ 15

16
=

1

16
· 16

15
=

1

15

Then, our original infinite binary expansion of the fractional part of our number is given as:

( 0.7 )10 =
(

0.1011 0011 0011 0011
)

2
=

1

2
+

2

15
+

1

15
=

15

30
+

4

30
+

2

30
=

21

30
=

7

10
.

Using this work, we see that

219.7 = 1101 1011 . 1011 0011 0011 0011

= 1101 1011 . 1011 0011 0011 0011× 2−7 × 27

=
(
1.101 1011 1011 0011 0011 0011

)
× 27

In this case, we see that our desired exponent value e = 7. We also know that

e = u− k

where the value of the biased k = 2β−1 − 1 depends on the number of bits β dedicated to the exponent
field in our floating point encoding scheme.
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Solution: Let’s begin our analysis by analyzing the single data class encoding where k = 27−1 = 127.
With this in mind, we see

u = e+ k = 7 + 127 = 134 = 27 + 22 + 21 = 1000 0110

Then, we can store our bit string in the single format and specify every bit as seen below:
31 23 0

1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

We can partition this string into 4-bit nibbles and translate the raw bit string into hexadecimal yielding

1100 0011 0101 1011 1011 0011 0011 0011 = c35bb333

Let’s continue our analysis by analyzing the double data class encoding where k = 210− 1 = 1023.
With this in mind, we see

u = e+ k = 7 + 1023 = 1030 = 210 + 22 + 21 = 100 0000 0110

Then, we can store our bit string in the single format and specify every bit as seen below:

63 52 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

We can partition this string into 4-bit nibbles and translate the raw bit string into hexadecimal yielding

0100 0000 0110 1011 0111 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 = 406b766666666666
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3. Suppose we have two variables, x and y, stored in memory. Suppose also that these variables are stored
as binary16 floating point numbers. Below are the bit strings that are stored in memory to represent
the values of each of these variables.

Bit string stored for variable x

15 10 0

0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0

S
ig

n

Exponent significand

Bit string stored for variable y

15 10 0

0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1

S
ig

n

Exponent significand

Recall that for each variable stored in the binary16 data class, we assign 1 bit for the sign, 5 bits for
the biased exponent (with bias K = 25−1 − 1), and 10 bits for the significand. Using this information,
please solve the problems below.

(3A) Convert x and y into normalized binary numbers in scientific notation in the form

± (1.b−1b−2...b−10)× 2e.

Solution: Let’s translate our encoded bit strings into their corresponding normalized binary
values. Let’s start with the variable x.

x = + (1.1001010110)× 2ex where ex = ux − k and k = 24 − 1 = 15

= + (1.1001010110)× 23 where ex = 18− 15

= 12.671875.

Next, we continue with the other variable:

y = + (1.0110011001)× 2ey where ey = uy − k and k = 24 − 1 = 15

= + (1.0110011001)× 21 where ey = 16− 15

= 2.798828125.

Engr 11: Winter 2020 Exam 2 © Jeffrey A. Anderson Page 9 of 19



(3B) Add x and y as mathematical objects and compute the exact value of the sum.

Solution: Now, let’s add these two numbers together using exact arithmetic:

x + y = (1.1001010110)× 23 + (1.0110011001)× 21

= 1100.1010110000 + 0010.1100110010

= 1111.0111100010

= + (1.1110111100010)× 23 = 15.470703125 .

(3C) Typecast the sum you found in Part (3B) above as a binary16 variable. If necessary, you can
assume that we use the “chop” rule for rounding by literally chopping off the extra bits. Write the
corresponding bit string for this variable in the boxes below. Be sure to explain how you made your
decisions and any other information you feel might communicate the strength of your understanding
of these ideas.

Solution: Let’s take a look at the the raw, uninterpreted bit string for the sum of our two variable.
Notice that in our case, we loose some information after the sum has been executed.

15 10 0

0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0

Sign Exponent significand

We can actually compute the stored value of the sum versus the exact value of our sum:

z = x + y︸ ︷︷ ︸
exact sum

= (1.1110111100010)× 23 = 15.470703125

ẑ = x⊕ y︸ ︷︷ ︸
binary16 sum

= (1.1110111100000)× 23 = 15.46875

Then, we can compare these two values by analyzing the errors between these values to find:

z − ẑ = (1.1110111100010)× 23 − (1.1110111100000)× 23 = 15.470703125− 15.46875

= (0.0000000000010)× 23 = 0.001953125

= 0.0000000010 =
1

29
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4. Consider the following lines of code:

1 format bank
2 min = 2ˆ53-1;
3 u(1,1) = uint64(min);
4 x(1,1) = min;
5 for i = 1:1:8
6 u(i+1,1) = uint64(min) + uint64(i);
7 x(i+1, 1) = min + i;
8 end %for (i)
9 T = table(u, x);

10 T.Properties.VariableNames = {'uint64', 'double'};
11 T

If we run this code in MATLAB, we get the following output in the command window:

(4A) Notice that u and x are column vectors with size 9×1. Compare and contrast the entries of u with the
entries of x. Identify which of individual coefficient(s) x(i,1) are the SAME AS the corresponding
coefficient(s) u(i,1). Please expand each of these values in terms of powers of 2. (Hint: there should
be 5 entries that do not have any encoding errors).

Solution: We notice that each of the following entries are exactly equal to each other:

x(1,1) = u(1,1) = 9007199254740991 = 253 − 1

x(2,1) = u(2,1) = 9007199254740992 = 253

x(4,1) = u(4,1) = 9007199254740994 = 253 + 21

x(6,1) = u(6,1) = 9007199254740996 = 253 + 22

x(8,1) = u(8,1) = 9007199254740998 = 253 + 22 + 21
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(4B) Now identify which individual coefficient(s) x(i,1) are DIFFERENT FROM the corresponding coef-
ficient(s) u(i,1). Please expand each of these x(i,1) AND u(i,1) values in terms of powers of 2.
individual entries of x contain errors as a result of the calculation x(i+1, 1)= min + i. For each of
these entries, write the difference between the values of x(i,1) AND u(i,1).

Solution: The following entries of the vectors x and u are not equal to each other.

x(3,1) = 9007199254740992 = 253 u(3,1) = 9007199254740993 = 253 + 20

x(5,1) = 9007199254740996 + 22 u(5,1) = 9007199254740995 = 253 + 21 + 20

x(7,1) = 9007199254740996 + 22 u(7,1) = 9007199254740997 = 253 + 22 + 20

x(9,1) = 9007199254741000 + 23 u(9,1) = 9007199254740999 = 253 + 22 + 21 + 20

We can analyze the individual differences between each of these entries. Doing so, we find that for each
i = 3, 5, 7, 9, the absolute error that occurs in our data encoding is identical and given as

|x(i,1)− u(i,1)| = 20

Due to the IEEE 754 rounding implementation, every other number is accurate when we attempt to add
values of 1 to each number beyond 253. In Part (4C) below, we discuss more details about where these errors
come from.
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(4C) Remember that, by default, MATLAB stores variables using the double or binary64 data class. The
structure of this data class is specified in the IEEE 754 Standard and assigns 1 bit for the sign, 11 bits
for the biased exponent (with bias K = 211−1 − 1), and 52 bits for the significand. Visually, we can
represent the bits stored in memory using the following diagram:

63 52 0
S
ig

n

Exponent Significand

Using this information, please identify the source of the errors in the individual entries of vector x. Explain
the size of the errors and relate this back to your understanding of the structure(s) of the double data class.

Solution: Let’s take a look at what is happening inside the computer as we store these integers in
memory. Specifically, we will compare and contrast the uint64 data class with the double date class.
In doing so, we hope to understand the source of these errors. Let’s begin by analyzing the uint64

entries of the vector u by showing the raw, uninterpreted bit strings in the individual entries of this
vector, as seen below.

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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Solution: Next, let’s analyze the double entries of the vector x by showing the raw, uninterpreted bit
strings in the individual entries of this vector, as seen below.

63 52 0

0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Now that we’ve focused on the bit-wise encoding of all nine entries of each vector x and u, let’s focus
in on a comparison between uint64exact encoding versus the double approximation of these integers.
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Solution:
Let’s take a look at the exact math behind the way we initialize the first entries of our vector u:

u(1,1) =
(

253 − 1
)

10
=

52∑
i=0

2i

= 20 + 21 + 22 + 23 + · · ·+ 251 + 252

= ( 1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 )2 .

Because we use the uint64 data class to store entries of u, we populate the individual bits as a pure
binary encoding, yielding the following bit code:

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

On the other hand, bit-wise encoding for x(1,1) uses the double data class. Let’s analyze how that
data class captures the value of this entry, with

x(1,1) = 253 − 1 =

52∑
i=0

2i

= 20 + 21 + 22 + 23 + · · ·+ 251 + 252

= ( 1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 )2

= ( 1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 )× 2−52 × 252

= ( 1 . 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 )× 252

Here we see that the exponent value e = 52. We know that in the double data class, we use the bias
value k = 210 − 1 = 1023. Then, we can computer the exponent code using the formula:

e = 52 = u− k = u− 1023 ⇐⇒ u = 52 + 1023 = 1075 = 1024 + 32 + 16 + 2 + 1 = 100 0011 0011

Using this exponent code and the trailing 52 bits in the fractional part of the normalize significand, we
see that when we store x(1,1) in memory, MATLAB stores the following bit code.

63 52 0

0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Solution: When we increment the value of each of the variables by one, we shift the bits, with

u(2,1) =
(

253
)

10

= ( 10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 )2 .

Once again, the uint64 data class stores the individual entries of u as a pure unsigned binary integer
encoding. Thus, MATLAB stores the following bits in the memory location for u(2,1):

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When incrementing the double encoding with this arithmetic, we see

x(2,1) = 253

= ( 10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 )2 .

= ( 1 . 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 )2 .× 2−53 × 253

= ( 1 . 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 )2 × 253

Here we see that the exponent value e = 53. We know that in the double data class, we use the bias
value k = 210 − 1 = 1023. Then, we can computer the exponent code using the formula:

e = 53 = u− k = u− 1023 ⇐⇒ u = 53 + 1023 = 1075 = 1024 + 32 + 16 + 4 = 100 0011 0100

Using this exponent code and the trailing 52 bits in the fractional part of the normalize significand, we
see that when we store x(1,1) in memory, MATLAB stores the following bit code.

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Solution: In the previous two cases, we see exact encodings of the desired values in the double data
class. But, in the third entry of x we see our first encoding error. Let’s analyze this in detail. We notice
that

u(3,1) =
(

253 + 20
)

10

= ( 10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 )2 .

Once again, the uint64 data class stores the individual entries of u as a pure unsigned binary integer
encoding. Thus, MATLAB stores the following bits in the memory location for u(2,1):

63 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

When incrementing the double encoding with this arithmetic, we see

x(3,1) = 253 + 20

= ( 10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 )2 .

= ( 1 . 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1 )2 .× 2−53 × 253

= ( 1 . 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1 )2 × 253

We know from the last page that our exponent code in this case is given by

u = 53 + 1023 = 1075 = 1024 + 32 + 16 + 4 = 100 0011 0100

We now see the source of our error. The double data class stores only 52 fractional bits in the normalized
signficand. But, our exact value for x(3,1) includes 53 bits in our fractional part. So, in order to
comply with the specifications of the IEEE 754 standard, MATLAB rounds the value x(3,1) downward,
resulting in the following bit code:

63 52 0

0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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5. Create a figure with four subplots. Details of the plots are labeled below.

(5A) For the first subplot, define the following variables:

x1 = [-5:5]; y1 = sin(x1);

Then, plot x1 versus y1 using a green dotted line with × markers. Make sure the legend is present.
Also label the horizontal axis using the string “x-axis” and label the vertical axis using the string
“y-axis.” Do not label the entire plot with a title for the first subplot.

(5B) For the second subplot, define the following variables:

x2 = [1:2:49]; y2 = x2 + x2ˆ0.5;

Then, plot x2 versus y2 using a red dash-dot line with triangle markers. This time, make sure that
NO legend is present. Label the entire plot using the title “Is this a line?” Also, label the horizontal
axis a “x” and the vertical axis as “y.”

(5C) For the second subplot, define the following variables:

x3 = [1:0.0001:2]; y3 = exp(x3);

Then, plot x3 versus y3 using a magenta dashed line with pentagram markers. Make sure that
NO legend is present and label the entire plot using the title “The study of sharp increase in
the exponential function over an interval.” Also, label the horizontal axis with the string “the
independent variable” and the vertical axis as “the dependent variable.”

(5D) For the final subplot, define the following variables:

x4 = [0:0.01:2*pi]; y4 = cos(x4);

Then, plot x4 versus y4 using a blue solid line with no markers. Create a legend and label the
entire plot using the title “A study of the shape of the Cosine curve.” Label the horizontal axis
with the string “the horizontal axis” and the vertical axis as “the vertical axis.”
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6. (For fun! Only touch this after you finish all other problems) In this class, we’ve studied a few different
algorithms for converting finite decimal expansions into binary expansions. Let’s return to one of these
algorithms by studying the number

0.390625 =
25

64
=

16 + 8 + 1

64

We can find the equivalent binary representation of this number with the following steps

2 · 0.390625 = 0.78125 =⇒ 0.78125 = 0.78125 + 0

2 · 0.78125 = 1.5625 =⇒ 1.5625 = 0.5625 + 1

2 · 0.5625 = 1.125 =⇒ 1.125 = 0.125 + 1

2 · 0.125 = 0.25 =⇒ 0.25 = 0.25 + 0

2 · 0.25 = 0.5 =⇒ 0.5 = 0.5 + 0

2 · 0.5 = 1.0 =⇒ 1.0 = 0.0 + 1

Then, we use this to conclude that (0.390625)10 = (0.011001)2. With this in mind, let n ∈ N and suppose
we have an n−digit, finite decimal expansion given by

x = 0.d1d2...dn =
d1d2...dn

10n

where 0 < x < 1. Prove that the algorithm described above will produce the binary representation of x.
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