
For Loops in MATLAB
Most of the code we’ve written so far in MATLAB is executed sequentially: one

line after then next. In other words, the control of the program flows sequentially:

we starts at the beginning of the code and works our way down, step by step until

we reach the end of our code. In such a sequential execution, each line executes

exactly one time: we don’t skip any lines of code and we do not repeat any lines

of code. This type of control flow is the default in MATLAB: unless we use special

syntax designed to change the flow of the program, MATLAB will always process

our code in sequential form (line by line).

We will encounter circumstances in which we want to depart from the default

control flow. When solving programming problems, we may want to jump to other

locations in our code. We can use such a jump to execute lines of code out of

the default order. Instead of executing a single line of code and then immediately

moving down to the next line, we can jump to some other place in our program.

One way to do this type of jumping is known as a for loop. As the name implies,

this programming structure is designed to loop through a particular block of code

multiple times. The syntax for using for loops in MATLAB is as follows

1 for loop_index = row_vector_of_index_values
2 % Loop body
3 % Block of code to be executed multiple times
4 % Includes any executable programming statements
5 % Before we jump back to start of code, loop_index increments
6 end

In this syntax, we have the following values:

loop_index

This is a scalar-valued variable that stores the current value for

index of the loop. You can think about this variable as serv-

ing two separate functions.First, we use the loop_index to de-

fine a finite, predetermined number of iterations. The number of

times we run the code inside the loop body is equal to the number

of columns in the row-vector row_vector_of_index_values. In

other words, we run one iteration of the loop body for each element

in row_vector_of_index_values. The loop_index automati-

cally tracks our progress and ensures that we exit the loop as soon as

we’ve run through all values stored in row_vector_of_index_values.

The second purpose of the loop_index is to progress through each

individual entry stored in the row_vector_of_index_values vec-

tor. During the first iteration of the for loop, the stored value

of the loop_index variable will be equal to the first entry in the

row_vector_of_index_values. Once we reach the end of the loop

body, the loop_index will increment to the next position and store

the second entry in the row_vector_of_index_values. Once this

happens, MATLAB will re-run all the code inside the loop body,

step by step, using the updated value for the loop_index variable.

We continue executing a single iteration of the code in the loop body

for each entry of row_vector_of_index_values. In this way, the

loop_index empowers us to move through each desired entry and

utilize these in each iteration of the loop body.

© Je�rey A. Anderson

row_vector_of_index_values

The number of columns of this vector indicates the number of it-

erations of our loop that we want to run. The individual entries

of this vector store our desired values for the loop_index vari-

able during each iteration. So, for the first iteration of our for
loop, the loop_index will take the value of the first entry stored in

row_vector_of_index_values. During the second iteration, the

will become the second entry in row_vector_of_index_values.

Unless we purposely interrupt the for loop using some other control

structure, this process continues until we work through all entries

of this vector and then exist the loop.

loop body

This is the block of code that we’d like to run for a pre-defined num-

ber of times. Usually we specifically use the value of the loop_index
variable during each iteration to accomplish specific tasks, though

this is not always necessary. In the absence of other control state-

ments, the code in this loop body executes sequentially (line by

line) during each iteration of the for loop. At the end of each loop,

the value of the loop_index variable increments to the next stored

value in row_vector_of_index_values and MATLAB re-runs the

code in the loop body again with the new index variable value.

© Je�rey A. Anderson

Let’s take a look at this basic for loop structure in action.

EXAMPLE 1
Let’s consider our first example of a for loop in action. In this case, we will simply

display the various values of the loop_index during each iteration of our for loop.

To do so, we use the following code:

1 for i = 1:6
2 i
3 end

A few features of this code to notice. First, the values stored in the vector

row_vector_of_index_values are defined using colon notation. We saw in pre-

vious work that the code 1:6 produces a 1 ◊ 6 row vector given by

1:6 =
#
1 2 3 4 5 6

$

Given that the row_vector_of_index_values variable is 1 ◊ 6, the code in our

loop body will execute 6 separate times. During the ith iteration, the value of the

loop_index variable (in this case, we call it i) will take on the value stored in the

ith entry of 1:6. We could have achieved the smae results using di�erent syntax

1 for i = [1 , 2 , 3 , 4 , 5 , 6]
2 i
3 end

In each case, the loop body simply displays the value of i during each iteration. One

way to make this code a little more fancy is to use MATLAB’s built-in fprintf
function. This function enables us to print out text and also numerical values.

1 for i = 1:1:6
2 fprintf('Value of the index variable i is %d. \n', i)
3 end

© Je�rey A. Anderson

EXAMPLE 2
Let’s see how we can use for loops accomplish some fun arithmetic. Suppose we

want to create code that counts up from 0 all the way to 8, in increment sizes of 1.

To accomplish this type of work, we will use a slightly modified syntax structure:

1 % Initialize variable
2 for loop_index = row_vector_of_index_values
3 % Loop body
4 % Block of code to be executed multiple times
5 % Update initialized variable using loop_index value
6 % Before we jump back to start of code, loop_index increments
7 end

In this case, we want to count starting at 0 all the way up to 8. The code below

accomplishes that goal:

1 count = 0;
2 for i = 1:8
3 count = count + 1
4 end

We can do some work to analyze each iteration of this for loop. To do so, let’s add

some text to the loop body and also a pause statement

1 count = 0;
2 for i = 1:1:8
3 count = count + 1;
4 fprintf('Count value: %d. \n', count)
5 end

We could use the same programming structure to count up from an initial value of

5 to an ending value of 25 by fours:

1 count = 5;
2 for i = 1:5
3 count = count + 4;
4 fprintf('Count value: %d. \n', count)
5 end

© Je�rey A. Anderson

EXAMPLE 3
Let’s use this programming structure to do some calculations for famous sums in

mathematics. We’ll start with one of the most famous sums from discrete mathe-

matics, the sum of the numbers from 1 to n:

nÿ

k=1
k = 1 + 2 + 3 + · · · + (n ≠ 1) + n.

Let’s take a look at the values of this summation for various values of n:

n Summation Total sum

1 1 1

2 1 + 2 3

3 1 + 2 + 3 6

4 1 + 2 + 3 + 4 10

5 1 + 2 + 3 + 4 + 5 15

6 1 + 2 + 3 + 4 + 5 + 6 21

7 1 + 2 + 3 + 4 + 5 + 6 + 7 28

8 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 36

9 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 45

10 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 55

n

nq
k=1

k = 1 + 2 + 3 + · · · + (n ≠ 1) + n
n(n + 1)

2

We can achieve these same results using for loops in MATLAB. To do so, we’ll use

the same syntax structure as in our last example:

1 n = 7;
2 sum = 0;
3 for k = 1:n
4 sum = sum + k;
5 end

We can now change the value of n and confirm any of the entries on this table. More

powerfully, we can change n to a value not on this table and run this summation.

© Je�rey A. Anderson

EXAMPLE 4
Let’s level up and use this tool to calculate more di�cult sums. Specifically, let’s

calculate the sum of the first n squares:

nÿ

k=1
k2

= 1
2

+ 2
2

+ 3
2

+ 4
2

+ · · · + (n ≠ 1)
2

+ n2
= 1 + 4 + 9 + 16 + · · · + n2.

Let’s take a look at the values of this summation for various values of n:

n Summation Total sum

1 1 1

2 1 + 4 5

3 1 + 4 + 9 14

4 1 + 4 + 9 + 16 30

5 1 + 4 + 9 + 16 + 25 55

6 1 + 4 + 9 + 16 + 25 + 36 91

7 1 + 4 + 9 + 16 + 25 + 36 + 49 140

8 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 204

9 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 285

10 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 385

n

nq
k=1

k2
= 1

2
+ 2

2
+ 3

2
+ · · · + n2 n(n + 1)(2n + 1)

6

We can achieve these same results using for loops in MATLAB. To do so, we’ll use

the same syntax structure as in our last example:

1 n = 8;
2 sum = 0;
3 for k = 1:n
4 sum = sum + k^2;
5 end

We can now change the value of n and confirm any of the entries on this table. More

powerfully, we can change n to a value not on this table and run this summation.

© Je�rey A. Anderson

EXAMPLE 5
We can also use the same for loop structure to cycle through the individual elements

of a vector. Let’s suppose we wanted to access the individual elements of a 1 ◊ 5

vector given by

x =
#
10 5 0 ≠5 ≠10

$

Remember that each of these elements has a row index

x =
#
x1 x2 x3 x4 x5

$
=

#
10 5 0 ≠5 ≠10

$

x =
#
x11 x12 x13 x14 x15

$
=

#
10 5 0 ≠5 ≠10

$

© Je�rey A. Anderson

x =

S

WWWWWWU

x1
x2
x3
x4
x5
x6

T

XXXXXXV
=

S

WWWWWWU

1

2

3

4

5

6

T

XXXXXXV

Suppose we wanted to define a new vector y such that

y =

S

WWWWWWU

y1
y2
y3
y4
y5
y6

T

XXXXXXV
=

S

WWWWWWU

x5
x4
x2
x6
x1
x3

T

XXXXXXV

To do this, we can use the following code:

1 x = 10:-5:-10
2 for j = 1:length(x)
3 x(1, j)
4 end

We can make this a little more fancy using the fprintf command:

1 x = 10:-5:-10
2 for j = 1:length(x)
3 fprintf('Entry number %d of vector x is %d, \n', j, x(1, j))
4 end

This would work equally well if we wanted to cycle through the entries of an equiv-

alently define column vector. The only di�erence is that we have to be careful to

track the address of each entry we want to display.

1 x = [10 ; 5 ; 0 ; -5; -10]
2 for j = 1:length(x)
3 x(j, 1)
4 end

Notice if I use the exact same code as I did for the row vector MATLAB gets angry

because I am not accessing the data in the form that I stored it.

© Je�rey A. Anderson

EXAMPLE 6
This ability to cycle through vector elements is quite powerful. We can use this to

store the output of each iteration of a for loop in an individual entry of a vector-

valued variable. Let’s return to our Example 3 in which we sum the first n numbers

together. Recall our code to do this was

1 n = 7;
2 sum = 0;
3 for k = 1:n
4 sum = sum + k;
5 end

Let’s modify our code slightly to take advantage of MATLAB’s array-based features.

1 n = 7;
2 sum = 0;
3 sum_vec = zeros(1, n);
4 for k = 1:n
5 sum = sum + k;
6 sum_vec(1,k) = sum;
7 end

After the kth iteration, we store the sum of the first k numbers in the kth entry of

the sum_vec variable. We can quickly confirm all the values of our table using this

construction.

© Je�rey A. Anderson

EXAMPLE 7
We are now in a position to use MATLAB for loops to define operations between

vectors. Suppose we want to add two vectors together

x + y =

S

WWWU

x1
x2
.
.
.

xn

T

XXXV
+

S

WWWU

y1
y2
.
.
.

yn

T

XXXV
=

S

WWWU

x1 + y1
x2 + y2

.

.

.

xn + yn

T

XXXV

Notice that the ith sum is stored in entry (i, 1) with zi = xi + yi. We can use this

structure to create the sum of two column vectors with equal sizes using a for loop

1 n = 10;
2 x = [1:n]';
3 y = [n:-1:1]';
4 sum = zeros(n, 1);
5 for k = 1:n
6 sum(k, 1) = x(k, 1) + y(k, 1)
7 end

EXAMPLE 8
We can also use for loops to define scalar-vector multiplication. Suppose we want

to multiply a scalar a œ R by a vector x œ Rn
with

ax = a

S

WWWU

x1
x2
.
.
.

xn

T

XXXV
=

S

WWWU

ax1
ax2

.

.

.

axn

T

XXXV

Notice that the ith entry stores the product of the scalar a with the ith entry of x:

axi. Using a for loop, we can create the product of a scalar and a vector multiple

and store the result as a vector:

1 n = 10;
2 a = 4;
3 x = ones(n, 1)
4 product = zeros(n, 1);
5 for k = 1:n
6 product(k, 1) = a*x(k, 1)
7 end

© Je�rey A. Anderson

If Statements in MATLAB
In almost all our work so far, we’ve executed our code sequentially. We execute

each line of code, move on to the next line of code, and so on. In this sequential

flow, each line of code is executed exactly one time and we cannot jump to other

places in our program nor skip any lines of code.

There are situations in which it can be helpful to break away from sequential

flow. We might want to be able to make a choice whether to execute certain lines of

code, jump to specific lines of code based on specific conditions, or jump to di�erent

locations in our code after making decisions about data stored in memory. We can

use programming constructs known as branching statements or selection statements
to do this type of jumping. As we will see, the name for these type of statements

comes from the idea that we can create branches of (i.e. select di�erent paths in)

our flowchart diagram based on the di�erent options we have in our code.

One basic tool for making choices in MATLAB is know as the if statement.

We will study four variations of this statement, including:

A. The if - end structure

B. The if - else structure

C. The if - elseif - else - end structure

D. Nested if-else-end statements

Each of these expressions take advantage of MATLAB’s logical data class.

Specifically, using logical and relational operations we create logical scalars whose

value we use to make decisions. Specifically, the entire idea of the if statement is

to execute certain lines of code if the value of a particular logical scalar is true or

jump to some other line of code if the value is false.

© Je�rey A. Anderson

The simple if statement
Let’s start with the most basic if statement. The syntax for this type of program-

ming structure is as follows:

1 if logical_scalar
2 % Body of if statement
3 % Block of code to be executed if logical_scalar is true
4 % Includes any executable programming statements
5 % If logical_scalar is false, we jump over (skip) this code
6 end

This construct has some interesting features:

logical_scalar

In the single if statement, we use a logical scalar as a condition

to make decisions. We might write conditional expressions using

logical or relational operations. We might also detect the state of

some variable.

Recall from our previous work that a logical scalar is an expression

in MATLAB that produces an output in the form of a 1-by-1 log-

ical array (a scalar). A logical scalar can have only one assigned

value: either true with logical value 1 or false with logical value

0. When the expression is evaluated, the single scalar-valued logical

output is assigned based on the truth value of the expression.

1 : If the logical_scalar evaluates to 1, we execute all state-

ments inside the body of the if statement.

0 : If the logical_scalar evaluates to 0, we jump over the entire

body of the if statement and continue to the next lines of code

after the end of our statement.

body of if statement

This is the block of code between the if logical_scalar condition

and the end of our statement. The body of the code can include

any executable programming statements. The major point is that

we only run the code in the body of the if statement when the

logical_scalar condition achieves the value of 1 (or true).

© Je�rey A. Anderson

Let’s take a look at an example of this basic if statement in practice action.

EXAMPLE 1
More on this example here.

© Je�rey A. Anderson

The if - else structure
We continue our exploration with if - else statements. The simple if statement

chooses whether or not to execute one single block of code inside the body of the

if statement. Sometimes we might want to choose between two di�erent blocks of

code: one block for true statements and a separate block for false statements. We

can achieve this using an if - else statement. The syntax for if - else statements

are follows:

1 if logical_scalar
2 % Code block 1
3 % Block of code to be executed if logical_scalar is true
4 % Includes any executable programming statements
5 else
6 %Code block 2
7 % Block of code to be executed if logical_scalar is false
8 % Includes any executable programming statements
9 end

This construct has some interesting features:

logical_scalar

In the single if statement, we use a logical scalar as a condition

to make decisions. We might write conditional expressions using

logical or relational operations. We might also detect the state of

some variable.

Recall from our previous work that a logical scalar is an expression

in MATLAB that produces an output in the form of a 1-by-1 log-

ical array (a scalar). A logical scalar can have only one assigned

value: either true with logical value 1 or false with logical value

0. When the expression is evaluated, the single scalar-valued logical

output is assigned based on the truth value of the expression.

1 : If the logical_scalar evaluates to 1, we execute all state-

ments inside code block 1.

0 : If the logical_scalar evaluates to 0, we execute all state-

ments inside code block 2.

Code block 1

This is the block of code between the if logical_scalar condition

and the else keyword in our statement. This code block can in-

clude any executable programming statements. The major point is

that we only run code block 1 when the logical_scalar condition

achieves the value of 1 (or true).

Code block 2

This is the block of code between the else and end keywords in

our statement. Again, we can write any executable programming

statements in code block 2. The lines of code in block 2 will only

run if the logical_scalar condition achieves the value of 0 (or

false).

© Je�rey A. Anderson

1. Video 1: Simple if statements

2. Video 2: if, else statements

3. Video 3: if, elseif, else statements

© Je�rey A. Anderson

