
Review: Variables in MATLAB
Remember in a previous video, we stated that every variable in MATLAB has three
key features:

1. a user-define symbolic name

2. an assigned value

3. a specific storage location

The actual bitstring stored in memory depends on the type of data we store. MAT-
LAB features 16 fundamental types of data, known as classes, each of which is
stored in the form of a matrix or an array. These are grouped into 7 larger cate-
gories including

1. logical

2. string

3. character

numeric (has 10 different data classes within this category)

14. table

15. cell

16. struct

There is one additional data class, called a function handle, which is always stored
as a scalar (a 1-by-1 matrix). In our work together, we explore all of these classes
to get a general idea of we can leverage these constructions to solve programming
problems. In this tutorial, we focus on the logical class.

Logical data class
We can use variables stored in the logical data class to test conditions in our
programs. Each entry in a logical variable can take precisely one of two values:

Truth value Assigned variable value

true logical 1

false logical 0

By default, logical values are stored as arrays. Each entry of a logical array is stored
using a single byte of memory (8 bits). Let’s take a look at some code that saves
two separate logical variables in memory:

1 T = logical(1);
2 F = logical(0);

We can also use the true and false functions to achieve the same results:

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/matlab_prog/fundamental-matlab-classes.html

1 T = true;
2 F = false;

Let’s use the workspace and the format debug command to highlight the difference
between variable declaration whose assigned value is encoded using the logical data
class and a variable declaration with an assigned valued based on a numeric data
class. By default, MATLAB stores data using the double class.

1 zero = 0;
2 one = 1;

Logical variables can be used for many purposes:

A. To perform a logical operation

We use logical operations to test conditions on one or more logi-
cal variables. We can use these operations to transform the logical
foundations of mathematical reasoning into computer code that ex-
ecutes based on these conditions.

B. To perform a relational operation

We use relational operators, sometimes called relational conditions,
to compare elements in two arrays. For example, we might want
to test if two variables are equal or not equal. We can also test if
one variable is greater than (less than) or equal to another variable.
For each of these tests, we return a true or false value to indicate
if the relation holds using a logical variable to store the result of
each test.

C. To test the state of MATLAB variables

We sometimes might find it helpful to test variables for specific
characteristics. We might want to test if a given input is stored using
a specified data type. Or we might want to test if a given variable
meets certain criteria. To do this, we can use logical variables to
report the results of such a test.

D. To address or find special entries in an array

When coding in MATLAB, we sometimes find it helpful to test
variables for specific characteristics. We might want to test if a
given input is stored using a specified data type. Or we might want
to test if a given variable meets certain criteria. To do this, we can
use logical variables to report the results of such a test.

Let’s go through each of these together to get a sense of what we mean. In this first
video, we’ll focus on the using logical values to perform logical operations.

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/logical-operations.html
https://www.mathworks.com/help/matlab/relational-operators.html

Logical scalars
We begin with a theoretic discussion. So much of modern day mathematics

(and hence any STEM field that relies on mathematical modeling) is stated in the
language of set theory. Set theory, at its core, provides the ability to define inclusion
and exclusion from a collection of object using propositions.

We say that a proposition is a statement that has exactly one truth value:
true which we denote at T, or false which we denote as F. We can assess the
specific truth value for a single statement in mathematics and report the result
accordingly. For example, let’s consider the following statement:

Proposition P: 24 = 8

Under the assumptions of standard algebra, this proposition is false since

24 = 2 · 2 · 2 · 2 = 16 6= 8.

On the other hand, we see

Proposition Q: 24 = 16

is true. One of the great accomplishments of the 20th century is to build electronic
computation machines that encode abstract mathematical logic using electronic
signals. The foundational idea of that work is to encode truth values using physical
electronic devices. In this encoding, we use the following maps between ideas:

Truth value Assigned variable value Voltage Level (Positive Logic)

true logical 1 High

false logical 0 Low

MATLAB’s logical class empowers us to encode and leverage this concept.
When we are reporting that a logical variable takes a value of 1, that is equivalent
to the idea that the corresponding proposition we’re testing is true. If that logical
variable has an assigned value of 0, this implies the corresponding proposition we
are testing is false. Notice that in our code above, we focused our work on logical
scalars, also know as scalar-valued logical expressions. Below we provide an explicit
definition of what this means:

logical scalar (noun)

An expression in MATLAB that produces an output in the form of
a 1-by-1 logical array (a scalar). There is exactly one assigned value
for this output out of a choice of two possible values. This output
can either be true with logical value 1 or false with logical value
0. When the expression is evaluated, the single scalar-valued logical
output is assigned based on the truth value of the expression.

© Jeffrey A. Anderson

Logical vectors
The logical function in MATLAB is quite interesting. This function transform

numerical input values into logical output variables. Specifically, if we look at the
help documentation for the logical function, we see that the syntax for this function
is as described below. Suppose we have a 1× 10 row vector x whose entry-by-entry
definition is given by

x =
[
0 1 0 2 0 4 0 8 0 16

]
As we’ve seen in previous videos, we can create this vector in MATLAB using the
following code:

1 x = zeros(1, 10);
2 twos = 2*ones(1,5);
3 x(1, 2:2:10) = twos.^(0:4);
4 lx = logical(x);

Notice that each entry of variable x is stored using the double class, which is one
of MATLAB’s 10 native numeric data classes. In the last line of this code, we place
the variable x as input to the logical function and store the output as a vector
lx. The reported value for vector lx is a 1×10 row vector whose individual entries
are logical scalars. Each nonzero entry of x is replaced with a logical 1 while every
entry equal to zero is replaces with logical 0.

Let’s take a look at a second example of how this function works, this time using
column vectors:

1 y = zeros(12, 1);
2 one = ones(4,1);
3 y(1:3:10 , 1) = one;
4 y(3:3:12, 1) = -1*one;
5 ly = logical(y);

Notice we have the same pattern, but this time our output is stored as a column
vector. In both case, the logical function takes in a one-dimensional numerical array
and outputs and logical vector, also called a vector-valued logical expression, of the
same dimension. Below is a more formal definition of a logical vector.

logical vector (noun)

An expression in MATLAB that produces a vector-valued output
each of whose entries are stored as logical scalars. Specifically, this
type of logical expression outputs either an m × 1 column vector
or a 1 × n row vector, where m, n ≥ 1. These vector-valued ex-
pressions produces outputs with one dimension larger than 1 and
the other dimension exactly equal to one. Each entry of this type
of array stores a scalar-valued logical expression that has exactly
one value, either true (stored as logical 1) or false (stored as log-
ical 0). When the expression is evaluated, the output organizes the
collection of such expressions into a vector.

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/ref/logical.html

Logical matrices
The logical function not only works with scalars and vector but also allows us

to transform numeric matrices into logical matrices. For example, suppose variable
A stores a matrix in MATLAB’s workspace with numeric entires. Then, if we write

L = logical(A)

the matrix L has a logical 1 (true) value in every position where A has a nonzero
element and a logical 0 (false) value in every zero position. Suppose we want
to test this functionality. Consider the following example

1 A = [1 , 0 , -2 ; 0 , 2, -1 ; 1 , 0 , 0];
2 L = logical(A)

Notice that the zero elements of L are in the exact positions of the zero elements of
A while the values of L equal to logical 1 are in the locations of nonzero elements
of A. We can set up a more general experiment to do this this type of test more
quickly using the following code.

1 B = randi(4,4,4)-2*ones(4,4);
2 LB = logical(AB);

In both of these examples, the logical function inputs a 2D numeric array (a
matrix) and outputs a 2D logical array of the same size. In other words, this is
a logical matrix, also called a matrix-valued logical expression. Below is a formal
definition of this construction.

logical matrix

The output of a matrix-valued logical expression is an m×n matrix
where both m ≥ 1 and n ≥ 1. These matrix-valued expressions pro-
duces outputs with both dimensions larger than 1. Each individual
entry of this type of array stores a logical scalar that has exactly
one value, either true or false. But when the expression is evalu-
ated, the output organizes the collection of these logical scalars into
a matrix having rows and columns.

© Jeffrey A. Anderson

Important notes on terminology for logical data
Of course, it is always true that all scalars are vectors and all vectors are matri-

ces. However, not all matrices are vectors. Nor are all vectors are scalars. The point
of this language is to help us speak precisely about the type of data structures we are
producing in our work in MATLAB. One of the very powerful yet subtle features of
MATLAB is that, because this is an array-based language, almost all operators and
functions are designed to work on matrices of any size. But it is sometimes helpful
and illustrative to distinguish between scalars (1-by-1), vectors (m-by-1 or 1-by-n),
and matrices (m-by-n). For this purpose, we will use the following terminology:

A. scalar: encodes 1× 1 data

B. nonscalar column vector: encodes m× 1 data where m > 1

C. nonscalar row vector: encodes 1× n data where n > 1

D. nonscalar vector: row or column vector having a dimension not equal to 1

E. nonscalar matrix: an m× n matrix with at least one dimension larger than 1

F. nonvector matrix: encode m× n data where m > 1 and n > 1

As we analyze the logical operators in MATLAB, we will pay special attention to
the use of these operators on scalar-valued logical components versus vector-valued
logical components. Remember that one of the major features of MATLAB is that
this is an array-based language. In other words, all of the data types are assumed
to be arrays and all operators are designed to function on array-valued inputs.

With this in mind, it’s useful to analyze the input-output relationships of each
call and distinguish between scalar-valued and non-scalar-valued inputs. This habit
will be quite helpful as we learn to use logical expressions as control conditions in
later lessons (think if statements and other branching structures).

© Jeffrey A. Anderson

The logical NOT operator
Let’s explore some basic concepts in the logic of propositions and observe how

to implement these ideas in MATLAB. One of the first logical operations we can
do is called negation and also known as the not operation. The negation of a
proposition P, denoted at ∼P, is the proposition “not P”. The proposition ∼P is
true exactly when proposition P is false. The table below reviews this in detail.

Truth value of P Logical value for P Truth value of ∼P Logical value for ∼P

true logical 1 false logical 0

false logical 0 true logical 1

This truth table is quite detailed and provides a lot of information. Sometimes
we might desire a more compact formulation of the same ideas. In that case, we
can use a more compact truth table for this type of reporting, as seen below:

P ∼P
1 0

0 1

We can test each individual rows of this table using statements in MATLAB given
by the following code:

1 P = logical(0); ~P , not(P)
2 Q = logical(1); ~Q , not(Q)

MATLAB’s not function produces the same output as the ∼ operator. Notice in
both of the lines of code above, we are working with logical scalars.

Using this functionality, remember that MATLAB stores all of its fundamental
data types as arrays. In other words, we can define multiple entries for logical
variables. For example, consider the following MATLAB code

1 P = logical([0; 1])
2 [P, ~P]

Here we create a column partition definition of a logical vector where column 1 stores
all possible logical values of a proposition P and column 2 stores the corresponding
values for ∼P. One really powerful consequent of defining logical variables as arrays
is that we can run logical operations on logical matrices. For example, take a look
at the following code:

1 A = [1 , 0 , -2 ; 0 , 2, -1 ; 1 , 0 , 0];
2 L = logical(A)
3 ~L, not(L), not(logical(A)), ~logical(A)

© Jeffrey A. Anderson

The logical AND operator
One of the delightful possibilities in using propositions in mathematics and cod-

ing is the idea of combining propositions together. Suppose we have two propo-
sitions P and Q and want to test if both are true simultaneously. To do this, we
can use the AND operation also known as a logical conjunction or a logical
multiplication. In other words, we can define a new proposition P & Q which is
true exactly when both P and Q are true. All possible truth values associated with
the and operations are seen in the truth table below.

P Q P & Q
0 0 0

0 1 0

1 0 0

1 1 1

We can test individual lines from this truth table using logical scalars. For example,
let’s test rows 2 and for:

1 %Row 2
2 P = logical(0); Q = logical(1);
3 P&Q, and(P,Q)
4
5 %Row 4
6 P = logical(1); Q = logical(1);
7 P&Q, and(P,Q)

Because MATLAB is an array-based language, we can store logical variables in
arrays. In doing so, we can confirm every row of the entire truth table in using
MATLAB’s built-in logical AND operator. Below is some code that does this

1 P = logical([0; 0; 1; 1]);
2 Q = logical([0; 1; 0; 1]);
3 [P, Q, P&Q], [P, Q, and(P, Q)]

There are a few interesting features of the code above. First, notice that the &

operator works on logical vectors (not just logical scalars). For now, we will focus
on using the logical operators on arrays having identical sizes. In a later video,
we’ll study a more general approach focusing on compatible sizes. Second, the and
function accomplishes the same task as the & operator. One line of code relies on
operator notation, the other relies on function notation.

Just like we saw when using the ~ operator, we can use the & operator on logical
matrices. In this video, we focus on combining logical matrices that have identical
dimensions. Let’s look at the code below:

1 A = zeros(6,6); A(1:2:5, :) = [2*ones(1, 6); 4*ones(1,6); 8*ones(1,6)]
2 B = zeros(6,6); B(: , 2:2:6) = [16*ones(6, 1), 32*ones(6,1), ...

64*ones(6,1)]
3 LA = logical(A); LB = logical(B)
4 LA & LB, logical(A) & logical(B), and(logical(A), logical(B))
5 ~(A & B), (~A) & B, A & (~B)

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/ref/and.html

Propositions versus the components and the form of a proposition
In the work we’ve done so far, we should distinguish between a specific proposi-

tion and the form of a proposition. When we say that the form P & Q represents a
proposition, this is only true when both P and Q are assigned to be specific propo-
sitions with pre-determined truth values. Formally speaking, the statement P & Q
has no truth value on its own and depends on the assigned values of propositions
P and Q.

Because each specific propositional form does not have a single truth value on its
own, we instead think about the behavior of the form based on the list of possible
values it might achieve. These possible output values depend on the assigned truth
values of its individual components. This is exactly the information we capture in
our truth tables. Each row of our truth table represents an input-output relation
between the truth values assigned to the component part(s) of a propositional form
and the corresponding scalar-valued output that form takes with respect to its
input(s).

© Jeffrey A. Anderson

The logical OR operator (aka inclusive-OR operator)
We can combine two propositions together in other interesting ways. Suppose

we have two propositions P and Q and want to test if one of the two are true (also
known as an inclusive OR operation). To do this, we can use the OR operation
also known as a logical disjunction or a logical addition. In other words, we
can define a new proposition P |Q which is true exactly when at least one of P or
Q is true. All possible truth values associated with the and operations are seen in
the truth table below.

P Q P | Q
0 0 0

0 1 1

1 0 1

1 1 1

We can test individual lines from this truth table using 1-by-1 logical variables. For
example, let’s test row 1:

1 P = logical(0);
2 Q = logical(0);
3 P|Q, or(P,Q)

We can do this more quickly using logical(0) | logical(0). Let’s also test row
3 of this table:

1 P = logical(1);
2 Q = logical(0);
3 P|Q
4 or(P,Q)

Once agin, we confirm the entire truth table for the (inclusive) logical OR operation
using MATLAB’s built-in logical or operator. Below is some code that does this

1 P = logical([0; 0; 1; 1]);
2 Q = logical([0; 1; 0; 1]);
3 [P, Q, P|Q]

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/ref/or.html

Logical operators and compatible sizes
One unique feature of MATLAB is that we can do logical operations on arrays

that have different dimensions. The only requirement is that the arrays must have
compatible sizes. We’ve studied the simplest case of this in which the arrays we
analyze have exactly the same size. However, most binary operators and functions
in MATLAB support more general operations on arrays that have compatible (but
not identical) sizes.

Two inputs have compatible sizes if one of the following is true:

A. Both inputs have identical dimensions (we’ve seen that in our previous videos)

B. One input is a scalar and the other input is a matrix of any size

1 a = 5; la = logical(a)
2 x = zeros(8,1);
3 neg_one = -2*ones(4,1);
4 x(2:2:8, 1) = neg_one.^([0 1 0 1]');
5 lx = logical(x);
6 la & lx, ~(la & lx), (~la)& lx

C. One input is a matrix and the other input is a column vector with the same
number of rows.

D. One input is a matrix and the other input is a row vector with the same
number of columns

E. One input is a column vector and the other input is a row vector

The sizes of incompatible inputs cannot be implicitly expanded to be the same.
Here are some examples of arrays with incompatible sizes:

A. Both inputs are matrices (not vectors) and at least one of the dimension sizes
is not equal

B. Two nonscalar row vectors with different sizes

C. Two nonscalar column vectors with different sizes

These cannot be implicitly expanded to the same size.

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html

The logical XOR operator (aka the exclusive-OR operator)
There is another way to combine propositions together. Suppose we have two

propositions P and Q and want to test if either one, but not both, of the propositions
is true (also known as an exclusive OR operation). To do this, we can use the XOR
operation. In other words, we can define a new proposition xor(P,Q) which is
true when exactly one (but not both) of P or Q is true. All possible truth values
associated with the and operations are seen in the truth table below.

P Q xor(P, Q)

0 0 0

0 1 1

1 0 1

1 1 0

We can test individual lines from this truth table using 1-by-1 logical variables. For
example, let’s test row 2:

1 P = logical(0);
2 Q = logical(1);
3 xor(P,Q)

We can also test row 4 of this table:

1 P = logical(1);
2 Q = logical(1);
3 xor(P,Q)

To produce the entire truth table for our exclusive-OR operator, we use the
following code:

1 P = logical([0; 0; 1; 1]);
2 Q = logical([0; 1; 0; 1]);
3 [P, Q, xor(P,Q)]

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/ref/xor.html

Equivalent propositions
We say that two propositions are equivalent if and only if they have the same

truth table. This definition empowers us to find that two propositions that have
different form might actually be equivalent.

P ∼P ∼ (∼P)
1 0 1

0 1 0

We can also see that ~(P & Q) is equivalent to (~ P) | (~Q) . Let’s explore
the truth table for each of these variables and confirm this for ourselves.

P Q P & Q ~(P & Q) ~P ~Q (~ P) | (~Q)
0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

We can write MATLAB code to confirm the same logical equivalence:

1 P = logical([0; 0; 1; 1]);
2 Q = logical([0; 1; 0; 1]);
3 [P, Q, P&Q, ~(P&Q), ~P, ~Q, (~P) | (~Q)]

Mention operator precedence in these discussions.

© Jeffrey A. Anderson

Combining logical operators
We can also combine logical operators together to form new logical operators.

These include

• NAND operator: NOT AND

NAND operator
P Q ∼ (P&Q)
0 0 1

0 1 1

1 0 1

1 1 0

• NOR operator: NOT OR

NOR operator
P Q ∼ (P | Q)
0 0 1

0 1 0

1 0 0

1 1 0

• XNOR operator: NOT XNOR

XNOR operator
P Q ∼xor(P,Q)
0 0 1

0 1 0

1 0 0

1 1 1

These operations for the basics for almost all logical operations implemented in
computer science. Below is a truth table that captures all of these operations:

NOT AND OR XOR NAND NOR XNOR
P Q ∼ P ∼ Q P&Q P | Q xor(P,Q) ∼ (P&Q) ∼ (P | Q) ∼ xor(P,Q)
0 0 1 1 0 0 0 1 1 1

0 1 1 0 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0

1 1 0 0 1 1 0 0 0 1

We can achieve this truth table using the following code in MATLAB.

1 P = logical([0; 0; 1; 1]);
2 Q = logical([0; 1; 0; 1]);
3 [P, Q, ~P, ~Q, P&Q, P|Q, xor(P,Q), ~(P&Q), ~(P|Q), ~xor(P,Q)]

© Jeffrey A. Anderson

Relational Operations using Logical Variables
As we discussed previously, logical variables are helpful for comparing elements

in two arrays. We can use relational operators to quantitatively compare the values
stored in two operands. The table below highlights the different type of relational
operations we might use in MATLAB.

Symbol Description Equivalent Function
== Equal to eq

~= Not equal to ne

< Strictly less than lt

<= Less than or equal to lt

> Strictly greater than gt

>= Greater than or equal to ge

Just like we saw with logical operators, these relational operators can be used to
compare elements in arrays. We’re going to analyze the results of these compar-
isons based on input-output relationships. Specifically, we will see how to compare
individual numeric scalar-, vector-, and matrix-valued quantities in MATLAB.

Just like we did with logical operators, we distinguish between four uses of
relational operators based on the type of output we generate:

1. Scalar-valued relational operation

In this use of the relational operator, we compare two scalar-valued
quantities to each other. The result is a logical scalar that indicates
whether the corresponding comparison is true or false

2. Vector-valued relational operation

When we do a vector-valued relational operation, we compare two
vector-valued quantities having the same dimension. This results
in a logical vector that indicates the result of an element-wise com-
parison between the two vectors.

3. Matrix-valued relational operation

These operations compare two matrix-valued inputs with identical
dimensions. The result is a logical matrix that stores the element-
wise comparison between the two inputs.

4. Compatible (mixed-dimension) relational operation

This is similar to our video on doing logical operations on compat-
ible arrays.

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/relational-operators.html
https://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html

Equal to and not equal to operators
Let’s begin with analyzing the equal to operator by comparing two scalar-valued

quantities. Below are example lines of code that run this comparison. Notice the
output for each individual line of code is a logical scalar. Moreover, we can store
this output into a variable using the logical data class.

1 2 == 3, eq(2, 3)
2 2 ~= 3, ne(2, 3)
3
4 4 == 2^2, eq(4, 2^2)
5 4 ~= 2^2, ne(4, 2^2)
6
7 x = 6; test = (x == 5);
8 x = 6; test = eq(x, 5);
9

10 x = 6; test = (x ~= 5);
11 x = 6; test = ne(x, 5);
12
13 y = 27/9; check = (y == 3);
14 y = 27/9; check = eq(y, 3);
15
16 y = 27/9; check = (y ~= 3);
17 y = 27/9; check = ne(y, 3);

In each case, we have two scalar-valued numerical inputs to our operator (or func-
tion). The output is a logical scalar indicating the truth value of this scalar com-
parison. If the output becomes a logical scalar with the value of logical 1, the
relationship between the two inputs is true. If the output gets a logical scalar with
value logical 0, the relationship between the two inputs is false.

Let’s try an equality check for numerical data stored in nonscalar vectors with
identical sizes. The example code below checks element-wise equality between row
vector input. Notice in this case that the input vectors are all identical dimensions.

1 0:8 == linspace(0,8,9)
2 0:8 ~= linspace(0,8,9)
3
4 -15:5:5 == linspace(20,0,5)
5 -15:5:5 ~= linspace(20,0,5)
6
7 x = -8:4:20; y = -4:2:10; test = (x == y)
8 x = -8:4:20; y = -4:2:10; test = eq(x, y)
9

10 x = -8:4:20; y = -4:2:10; test = (x ~= y)
11 x = -8:4:20; y = -4:2:10; test = ne(x, y)

For each of these examples, we have two vector-valued numerical inputs with iden-
tical dimensions. The output is stored in a logical vector with the same dimensions.
Each entry of that vector-valued output is a logical scalar indicating the truth value
of the element-wise comparison between the two input values.

We can also test for equality between nonvector matrices with identical dimen-
sions.

1 A = [4, -1; 1 , 4]; B = [-2 , -1; 1 , 4]; A == B
2 C = [0:4:12 ; 16:4:28; 32:4:44];
3 twos = 2*ones(1,4); D = [twos.^(3:-1:0); twos.^(4:-1:1); ...

twos.^(5:-1:2)];
4 test = (A == B)

© Jeffrey A. Anderson

Let’s try some examples of using relational operators on two inputs with different
dimensions, the so called arrays with compatible sizes scenario.

1 x = -8:4:20; y = -4:2:10; x == 8, 8 == y
2 A = [4, -1; 1 , 4]; B = [-2 , -1; 1 , 4]; 4 == A, B == 4
3 C = [0:4:12 ; 16:4:28; 32:4:44];
4 twos = 2*ones(1,4); D = [twos.^(3:-1:0); twos.^(4:-1:1); ...

twos.^(5:-1:2)];
5 D(:,1) == C, D(:, 2) ~= C, D(3,:) == C

We can also combine relational operators with logical operators to create more
complex logical tasks.

1 x = -8:4:20; y = -4:2:10; x == 8 | 8 == y
2 A = [4, -1; 1 , 4]; B = [-2 , -1; 1 , 4]; 4 == A & 4 == B

© Jeffrey A. Anderson

One of the interesting features of the comparison operators is the fact that we
are not limited to the case of inputs having identical sizes. In fact, MATLAB
only requires that the sizes of the inputs are compatible. There is some good
documentation on what this means under the title Compatible Array Sizes for
Basic Operations.

Two inputs have compatible sizes if one of the following is true:

A. Both inputs have identical dimensions

B. One input is a scalar and the other input is a matrix of any size

C. One input is a matrix and the other input is a column vector with the same
number of rows.

D. One input is a matrix and the other input is a row vector with the same
number of columns

E. One input is a column vector and the other input is a row vector

Here are some examples of arrays with incompatible sizes:

• Both inputs are matrices (not vectors) and at least one of the dimension sizes
is not equal

• Two nonscalar vectors

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html
https://www.mathworks.com/help/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html

Inequality operators
The other relational operators work in a similar fashion by taking entry-by-entry

comparison between the two inputs and producing a logical output that stores the
results of those comparisons in the address location from each individual entry.
Let’s take a look at some examples of this code:

1 2 < 3, lt(2, 3)
2 2 <= 3, le(2, 3)
3 2 > 3, gt(2, 3)
4 2 >= 3, ge(2, 3)
5
6 4 < 2^2, lt(4, 2^2)
7 4 <= 2^2, le(4, 2^2)
8 4 > 2^2, gt(4, 2^2)
9 4 >= 2^2, gt(4, 2^2)

10
11 4 <= 2^2 & 4 >= 2^2, 4 == 2^2
12
13 y = 27/9; check = (y == 3);
14 y = 27/9; check = eq(y, 3);
15
16 y = 27/9; check = (y ~= 3);
17 y = 27/9; check = ne(y, 3);

© Jeffrey A. Anderson

Testing the State of Variables using Logical Variables
1. Video 1: Highlight the isa function to determine if the input has specified

data type.

2. Video 2: Highlight extended logical operators described in logical operations
documentation

– all : determine if all array element are nonzero or true
– any : determine if all array element are nonzero
– find : find indices and values of nonzero elements
– islogical : determine if input is a logical array
– true , false, logical
– How to reduce logical arrays into a single value

3. Video 3: Highlight the is* documentation to test the state of various MAT-
LAB entities:

Addressing and finding special entries in an array
1. Video 1: How does logical indexing work (i.e. indexing with logical values)

2. Video 2: Find array elements that meet a condition.

© Jeffrey A. Anderson

https://www.mathworks.com/help/matlab/logical-operations.html
https://www.mathworks.com/help/matlab/matlab_prog/reduce-logical-arrays-to-single-value.html

