Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

- 1. (T) F The transpose of a matrix unit is also a matrix unit.
- 2. T Suppose $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^m$ The matrix given by the outer product $\mathbf{x}\mathbf{b}^T$ is an $m \times n$ matrix.
- 3. The transpose of a square $n \times n$ shear matrix $S_{ik}(c)$ is also a shear matrix given by $S_{ki}(c) = (S_{ik}(c))^T$.
- 4. T Let $\mathbf{e}_j = I_n(:,j) \in \mathbb{R}^n$ be the jth column of the identify matrix $I_n \in \mathbb{R}^{n \times n}$ for all j = 1, 2, ..., n. If $i, k \in [n]$ with $i \neq k$, then the shear matrix

$$S_{ik}(c) = I_n + c \ \mathbf{e}_i \ \mathbf{e}_k^T.$$

5. The Let $\mathbf{e}_k = I_n(:,k) \in \mathbb{R}^n$ be the kth column of the identify matrix $I_n \in \mathbb{R}^{n \times n}$ for all k = 1, 2, ..., n. If $j \in \{1, 2, 3, ..., n\}$, then the dilation matrix

$$D_j(c) = I_n + (c-1) \mathbf{e}_j \mathbf{e}_j^T$$

6. \mathbf{T} For matrices in $\mathbb{R}^{4\times4}$, $D_3(6) - D_3(5) = \mathbf{e}_3 \cdot \mathbf{e}_3^T$

Multiple Choice For the problems below, circle the correct response for each question.

- 1. If $A \in \mathbb{R}^{4 \times 6}$, how many rows does the matrix A^T have?
 - A. 4
- **B.** 6
- C. 0
- D. 1
- E. None of these.

2. Consider the following expression:

$$\begin{bmatrix} 9 & 5 & 3 \\ 8 & 0 & 2 \\ 7 & -6 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 6 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} -5 & 2 & 0 \end{bmatrix}$$

Using the properties of matrix-matrix multiplication and matrix-matrix addition, which of the following represents the given expression:

A.
$$\begin{bmatrix} 9 & 5 & 3 \\ 8 & 0 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 & 5 & 3 \\ -2 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 9 & 5 & -3 \\ 18 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 9 & 5 & 3 \\ 8 & 0 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$
 B.
$$\begin{bmatrix} 3 & 5 & 3 \\ -2 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$
 C.
$$\begin{bmatrix} 9 & 5 & -3 \\ 18 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 9 & 5 & -3 \\ -2 & -4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$
 E.
$$\begin{bmatrix} 9 & 5 & -3 \\ -2 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$

$$\mathbf{E.} \begin{bmatrix} 9 & 5 & -3 \\ -2 & 4 & 2 \\ 7 & -6 & 1 \end{bmatrix}$$

3. Suppose that $\mathbf{e}_k \in \mathbb{R}^3$ is the 3×1 elementary basis vector with $\mathbf{e}_k = I_3(:,k)$ for k = 1,2,3. Let

$$A = -2 \cdot \mathbf{e}_3 \cdot \mathbf{e}_1^T + 4 \cdot \mathbf{e}_2 \cdot \mathbf{e}_2^T + 3 \cdot \mathbf{e}_3 \cdot \mathbf{e}_3^T - \mathbf{e}_1 \cdot \mathbf{e}_2^T$$

Then, which of the following gives $A(:,2) \cdot A(1,:)$?

A.
$$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 B. 4 C. 1 **D.**
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 E.
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} 0 & 1 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$E. \begin{bmatrix} 0 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

4. Define the matrix $B \in \mathbb{R}^{3\times 3}$ as a sum of elementary matrices given by

$$B = D_1(2) + S_{21}(2) + S_{31}(3) - S_{13}(-4).$$

Which of the following matrices is equivalent to B?

$$\mathbf{A.} \begin{bmatrix} 3 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 3 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$
 B. $\begin{bmatrix} 2 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 0 & -4 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 4 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$ E. $\begin{bmatrix} 3 & 0 & -4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$

D.
$$\begin{bmatrix} 4 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$

E.
$$\begin{bmatrix} 3 & 0 & -4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$