Answers
 Lesson 9 Warm Up Quiz

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. (T) F The transpose of a matrix unit is also a matrix unit.
2. T F Suppose $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ The matrix given by the outer product $\mathbf{x b}^{T}$ is an $m \times n$ matrix.
3. T F The transpose of a square $n \times n$ shear matrix $S_{i k}(c)$ is also a shear matrix given by $S_{k i}(c)=\left(S_{i k}(c)\right)^{T}$.
4. (T) F Let $\mathbf{e}_{j}=I_{n}(:, j) \in \mathbb{R}^{n}$ be the j th column of the identify matrix $I_{n} \in \mathbb{R}^{n \times n}$ for all $j=1,2, \ldots, n$. If $i, k \in[n]$ with $i \neq k$, then the shear matrix

$$
S_{i k}(c)=I_{n}+c \mathbf{e}_{i} \mathbf{e}_{k}^{T}
$$

5. (T) F Let $\mathbf{e}_{k}=I_{n}(:, k) \in \mathbb{R}^{n}$ be the k th column of the identify matrix $I_{n} \in \mathbb{R}^{n \times n}$ for all $k=1,2, \ldots, n$. If $j \in\{1,2,3, \ldots, n\}$, then the dilation matrix

$$
D_{j}(c)=I_{n}+(c-1) \mathbf{e}_{j} \mathbf{e}_{j}^{T}
$$

6. (T) F For matrices in $\mathbb{R}^{4 \times 4}, D_{3}(6)-D_{3}(5)=\mathbf{e}_{3} \cdot \mathbf{e}_{3}^{T}$

Multiple Choice For the problems below, circle the correct response for each question.

1. If $A \in \mathbb{R}^{4 \times 6}$, how many rows does the matrix A^{T} have?
A. 4
B. 6
C. 0
D. 1
E. None of these.
2. Consider the following expression:

$$
\left[\begin{array}{rrr}
9 & 5 & 3 \\
8 & 0 & 2 \\
7 & -6 & 1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 6
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]\left[\begin{array}{lll}
-5 & 2 & 0
\end{array}\right]
$$

Using the properties of matrix-matrix multiplication and matrix-matrix addition, which of the following represents the given expression:
A. $\left[\begin{array}{rrr}9 & 5 & 3 \\ 8 & 0 & 2 \\ 7 & -6 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}3 & 5 & 3 \\ -2 & 4 & 2 \\ 7 & -6 & 1\end{array}\right]$
C. $\left[\begin{array}{rrr}9 & 5 & -3 \\ 18 & 4 & 2 \\ 7 & -6 & 1\end{array}\right]$
D. $\left[\begin{array}{rrr}9 & 5 & -3 \\ -2 & -4 & 2 \\ 7 & -6 & 1\end{array}\right]$
E. $\left[\begin{array}{rrr}9 & 5 & -3 \\ -2 & 4 & 2 \\ 7 & -6 & 1\end{array}\right]$
3. Suppose that $\mathbf{e}_{k} \in \mathbb{R}^{3}$ is the 3×1 elementary basis vector with $\mathbf{e}_{k}=I_{3}(:, k)$ for $k=1,2,3$. Let

$$
A=-2 \cdot \mathbf{e}_{3} \cdot \mathbf{e}_{1}^{T}+4 \cdot \mathbf{e}_{2} \cdot \mathbf{e}_{2}^{T}+3 \cdot \mathbf{e}_{3} \cdot \mathbf{e}_{3}^{T}-\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{T}
$$

Then, which of the following gives $A(:, 2) \cdot A(1,:) ?$
A. $\left[\begin{array}{rrr}0 & -1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0\end{array}\right]$
B. 4
C. 1
D. $\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0\end{array}\right]$
E. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0\end{array}\right]$
4. Define the matrix $B \in \mathbb{R}^{3 \times 3}$ as a sum of elementary matrices given by

$$
B=D_{1}(2)+S_{21}(2)+S_{31}(3)-S_{13}(-4)
$$

Which of the following matrices is equivalent to B ?
A. $\left[\begin{array}{lll}3 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2\end{array}\right]$
B. $\left[\begin{array}{lll}2 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$
C. $\left[\begin{array}{rrr}2 & 0 & -4 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}4 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2\end{array}\right]$
E. $\left[\begin{array}{rrr}3 & 0 & -4 \\ 2 & 2 & 0 \\ 3 & 0 & 2\end{array}\right]$

