
3.3 Matrices from Outer Products

Definition 3.16: Outer Product of Vectors

Let x œ Rm◊1 and y œ Rn◊1. Then, the outer product between x and y
is the m ◊ n matrix given by

xyT =

S

WWWU

x1
x2
...

xm

T

XXXV
#
y1 y2 · · · xn

$
=

S

WWWU

x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn

...
...

. . .
...

xmy1 xmy2 · · · xmyn

T

XXXV

Notice that row i of the outer product xyT is given by xiyT for i =
1, 2, ..., m while column k of the outer product is given by ykx for k =
1, 2, ..., n.

The outer product between two vectors can be very useful in computing many
multiplications between real numbers simultaneously. These matrices are also ex-
tremely helpful in generating new matrices.

EXAMPLE 3.3.1
Let {ei}n

i=1 ™ Rn◊1 be the set of elementary basis vectors for Rn. We will define
each vector ei component-wise as follows

ei(j, 1) =
;

1 if i = j,

0 otherwise.

For n = 3, we see

e1 =

S

U
1
0
0

T

V , e2 =

S

U
0
1
0

T

V , e3 =

S

U
0
0
1

T

V .

Using these vectors and the outer product, we can create n ◊ n matrix units
Eik = eieT

k

with all zero entries except the entry in row i and column k, which is equal to 1.
In the 3 ◊ 3 case, there are a total of nine matrix units given as follows:

E11 =

S

U
1 0 0
0 0 0
0 0 0

T

V , E12 =

S

U
0 1 0
0 0 0
0 0 0

T

V , E13 =

S

U
0 0 1
0 0 0
0 0 0

T

V ,

E21 =

S

U
0 0 0
1 0 0
0 0 0

T

V , E22 =

S

U
0 0 0
0 1 0
0 0 0

T

V , E23 =

S

U
0 0 0
0 0 1
0 0 0

T

V ,

E31 =

S

U
0 0 0
0 0 0
1 0 0

T

V , E32 =

S

U
0 0 0
0 0 0
0 1 0

T

V , E33 =

S

U
0 0 0
0 0 0
0 0 1

T

V .

Notice, we can actually define matrix units in the m ◊ n case, although to do so we
would need to take an outer product between vectors of di�erent sizes. For now we
focus on the square matrix units as we will use these most frequently.
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EXAMPLE 3.3.2
Lets suppose we want to create a 5 ◊ 5 matrix T having the following structure:

T2 =

S

WWWWU

0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 ≠2 0 0 0
0 4 0 0 0

T

XXXXV

Then, we can define a 5 ◊ 1 vector

· =

S

WWWWU

0
0
3

≠2
4

T

XXXXV

and we can write T = · eT

2 , where e2 is the second elementary basis vector in R5.

Lesson 9, Part 1: Matrices from Outer Products- Suggested

Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. Create each of the following matrices using an outer product between two
vectors. Specifically state the two vectors you are using to write the outer
product:

A =

S

WWWWU

0 0 0 0 0
0 0 0 0 0
1 ≠3 2 5 0
0 0 0 0 0
0 0 0 0 0

T

XXXXV
, B =

S

WWU

0 0 0 0
0 0 0 ≠7
0 0 0 0
0 0 0 0

T

XXV , C =

S

WWWWU

0 0 0
0 0 0
0 4 0
0 ≠3 0
0 2 0

T

XXXXV
,
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3.4 Matrix Addition, Scalar Multiplication and the Transpose
Now that we have seen the use of matrices to model a selection of important

applications, let’s discuss operations that exist between matrices. We begin with
matrix-matrix addition and scalar-matrix multiplication. As we will see, these are
the natural analogs of the corresponding vector operations with the same name.

Definition 3.17: Matrix-Matrix Addition

If A, B œ Rm◊n are matrices with the same row and column dimensions,
then the matrix sum A + B is the matrix obtained by adding the corre-
sponding entries of A and B. In other words, the entry with row index i

and column index k in the sum A + B is the sum aik + bik.

EXAMPLE 3.4.1
In Section 3.1 we defined the n ◊ n identify matrix In as the matrix containing all
ones on the main diagonals. We can use matrix addition to write the identity as
the sum of n matrix units as follows:

In =
nÿ

i=1
Eii =

nÿ

i=1
ei eT

i

Definition 3.18: Scalar-Matrix Multiplication

Suppose A œ Rm◊n is a matrix and – œ R is a scalar. Then the scalar-
matrix product – ·A is the matrix obtained by multiplying each entries
of A by the scalar –. In other words, the entry with row index i and
column index k in the product – · A is the product – aik.

EXAMPLE 3.4.2
We can use matrix-matrix addition and scalar-matrix multiplication to write any
square matrix as the sum of matrix units. For A œ Rn◊n, we have

A =
nÿ

i=1

nÿ

k=1
aik · ei eT

k

For example, in the n = 2 case, we might write
5

2 ≠1
≠3 5

6
= 2 ·

5
1 0
0 0

6
+ ≠1 ·

5
0 1
0 0

6
+ ≠3 ·

5
0 0
1 0

6
+ 5 ·

5
0 0
0 1

6

= 2 · e1 eT

1 + ≠1 · e1 eT

2 + ≠3 · e2 eT

1 + 5 · e2 eT

2
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EXAMPLE 3.4.3
Let’s consider two image vectors that compose faces from the Face Recognition
Project at MIT (http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/).
Each images is stored as a 128◊128 black-and white photo. Here we take two images
from our RAW image data base (image numbers 2147 and 1734, respectively):

We will store the the image on the left in the matrix M and the image on the right
in the matrix F . Notice that M, F œ R128◊128. Now, we can use matrix operations
to blend these two images together. In particular, let’s consider the new 128 ◊ 128
blended matrix

B = 1
2M + 1

2F

This blended image matrix B is shown below:

This is a great example of how meaning can be introduced for the matrix-matrix
addition operation.
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There are a number of algebraic properties that hold for these operations be-
tween matrices.

Theorem 16: Algebraic Properties of Matrix Operations

Let A, B, C œ Rm◊n and a, b œ R. Then, all of the following are properties
of matrix addition:

1. Commutativity of matrix addition: A + B = B + A

2. Associativity of matrix: A + (B + C) = (A + B) + C

3. Additive Identity: A + 0 = 0 + A = A

4. Additive Inverses: A + ≠A = ≠A + A = 0

5. Distributivity of matrix addition: a(A + B) = aA + aB

6. Distributivity of scalar addition: (a + b)A = aA + bA

7. Associativity of scalar multiplication: a (bA) = (ab)A

8. Multiplicative Identity of scalar multiplication: 1A = A

Notice that the properties of matrix addition and scalar-matrix multiplication
are identical to the corresponding properties of vector addition and scalar-vector
multiplication.

Proof. Let A, B, C œ Rm◊n and a, b œ R. We begin by establishing commutativity
of matrix addition. Consider

A + B =

S

WWWU

a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

T

XXXV

=

S

WWWU

b11 + a11 b12 + a12 · · · b1n + a1n

b21 + a21 b22 + a22 · · · b2n + a2n

...
...

. . .
...

bm1 + am1 bm2 + am2 · · · bmn + amn

T

XXXV

= B + A

In this case, we’ve used the scalar properties of R and the component-wise definition
of matrix addition to confirm commutativity.
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Let’s also confirm associativity. Again, we begin by considering

A + (B + C) =

S

WWWU

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

T

XXXV
+

S

WWWU

b11 + c11 b12 + c12 · · · b1n + c1n

b21 + c21 b22 + c22 · · · b2n + c2n

...
...

. . .
...

bm1 + cm1 bm2 + cm2 · · · bmn + cmn

T

XXXV

=

S

WWWU

a11 + b11 + c11 a12 + b12 + c12 · · · a1n + b1n + c1n

a21 + b21 + c21 a22 + b22 + c22 · · · a2n + b2n + c2n

...
...

. . .
...

am1 + bm1 + cm1 am2 + bm2 + cm2 · · · amn + bmn + cmn

T

XXXV

=

S

WWWU

a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

T

XXXV
+

S

WWWU

c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cm1 cm2 · · · cmn

T

XXXV

= (A + B) + C

Again, we’ve borrowed the associativity of each coe�cient from R. The other
proofs from this theorem follow from similar arguments and are left to the reader
as exercises.

Definition 3.19: Rank-one updates

Let A œ Rm◊n and vectors x œ Rm and y œ Rn. Then, a rank one update
of A is given by

A + x yT

As we will see, rank one modifications of matrices play an important role in our so-
lutions for the linear-systems problem, the least-squares problem and the eigenvalue
problems. There are many important examples of rank one updates to the identity
matrix. Below are a few major classes of rank one updates that we will revisit in
our discussion of matrix-vector multiplication and linear systems problems.
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Definition 3.20: Shear Matrices

Let n œ N. For i ”= k, we define an n ◊ n shear matrix takes the form

Sik(c) = In + c · ei eT

k

Notice that shear matrices are rank one updates to the identity matrix. Also,
shear matrices are the identity matrix with entry in row i and column k equal to c.

EXAMPLE 3.4.4
Let’s look at S31(≠5) in the n = 3 case. Notice

S31(≠5) = I3 + ≠5 · e3 eT

1

=

S

U
1 0 0
0 1 0
0 0 1

T

V + ≠5 ·

S

U
0
0
1

T

V #
1 0 0

$

=

S

U
1 0 0
0 1 0
0 0 1

T

V +

S

U
0 0 0
0 0 0

≠5 0 0

T

V

=

S

U
1 0 0
0 1 0

≠5 0 1

T

V
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Definition 3.21: Dialation Matrices

Let n œ N. For j œ {1, 2, ..., n}, we define an n ◊ n dilation matrix

Dj(c) = In + (c ≠ 1) · ej eT

j

EXAMPLE 3.4.5
For the n = 5 case, we can look at

D2(5) = I5 + (5 ≠ 1) · e2 eT

2

=

S

WWWWU

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

T

XXXXV
+ (5 ≠ 1) ·

S

WWWWU

0
1
0
0
0

T

XXXXV

#
0 1 0 0 0

$

=

S

WWWWU

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

T

XXXXV
+

S

WWWWU

1 0 0 0 0
0 5 ≠ 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

T

XXXXV

=

S

WWWWU

1 0 0 0 0
0 5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

T

XXXXV

As we will see, we can use this dilation matrix to scale an entire row or an entire
column of a matrix via matrix-matrix multiplication.
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Definition 3.22: Transposition Matrices

Let n œ N. For i ”= k, we define the transposition matrix in Rn◊n to be
given by

Pik = ei eT

k
+ ek eT

i
+

nÿ

j=1
j ”=i,k

ej eT

j

with ei œ Rn for all i = 1, 2, ..., n.

Notice, we can form any transposition matrix by taking the n◊n identity matrix
and swapping row i with row k. Transposition matrices are an example of what is
know as a rank-two update.

EXAMPLE 3.4.6
Let’s consider the transposition matrix P24 in R

4◊4 given by

P24 = e2 eT

4 + e4 eT

2 +
4ÿ

j=1
j ”=2,4

ej

=

S

WWU

0
1
0
0

T

XXV
#
0 0 0 1

$
+

S

WWU

0
0
0
1

T

XXV
#
0 1 0 0

$
+

S

WWU

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T

XXV +

S

WWU

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

T

XXV

=

S

WWU

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

T

XXV +

S

WWU

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

T

XXV +

S

WWU

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

T

XXV

=

S

WWU

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

T

XXV

These matrices are a special example of a much larger class of matrices known
as permutation matrices. As we will see, we can generate any permutation matrix
as the product of a series of transposition matrices.
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Definition 3.23: Givens Rotation

A Givens rotation is an n ◊ n matrix of the form

Q(i, k, ◊) =

S

WWWWWWWWWWWU

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · ≠s · · · c · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1

T

XXXXXXXXXXXV

where c = cos(◊) and s = sin(◊). The Givens rotation matrix has a total
of (n + 2) nonzero entries.
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Definition 3.24: Gauss Transform

Let n, k œ N with k < n. Let · œ Rn be a vector whose the first k

components are zero. In other words, suppose · is in the form

· T =
#
0 · · · 0
¸ ˚˙ ˝

k

·k+1 · · · ·n

$

Then, a Gauss transformation is a matrix

Lk = In ≠ · eT

k

We call the vector · a Gauss vector.

EXAMPLE 3.4.7
Let n = 5 and k = 2. We define the 5 ◊ 1 vector · T =

#
0 0 3 ≠2 4

$
. The

corresponding Gauss transformation is given by

L2 = I5 + · eT

2 =

S

WWWWU

1 0 0 0 0
0 1 0 0 0
0 3 1 0 0
0 ≠2 0 1 0
0 4 0 0 1

T

XXXXV

As we will see, Gauss transformations, Shear Matrices, Dilation matrices and
Transposition Matrices are extremely helpful tools to create a matrix description of
Gaussian elimination. We will use these matrices heavily in creating full solution
sets to linear-systems problems. Each of these matrices can be written as the sum
of special matrix units.
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Definition 3.25: Transpose of a Matrix

Let A œ Rm◊n be a matrix with real-valued coe�cients. The transpose
of A, denoted by A

T , is defined to be the matrix A
T œ Rn◊m such that

the ith row of A
T is the row vector formed by transposing the ith column

vector of A.

Theorem 17: Algebraic Properties of Matrix Transposes

Let A, B œ Rm◊n and c œ R. Then, all of the following are properties of
matrix transposes:

i. Two Transposes:
1

(A)T

2T

= A

ii. Transpose of a Sum: (A + B)T = A
T + B

T

iii. Scalars come out of Transposes: (cA)T = c A
T

iv. Transpose of a Matrix Product: (A · B)T = B
T

A
T

Proof. Let A, B œ Rm◊n and c œ R. Let’s start by establishing property i. about
taking two transposes of a matrix. To this end, let

C = A
T

Since A is of size m ◊ n, we know that C has n rows and m columns. Moreover, we
see by the definition of the transpose that cki = aik for each i œ {1, 2, ..., m} and
k œ {1, 2, ..., n}. Now, setting D = C

T we see dik = cki = aik. Thus, we conclude
that D = A, which is what we wanted to show.

Next, let’s consider the m ◊ n matrix

S = A + B

We know sik = aik + bik for each i œ {1, 2, ..., m} and k œ {1, 2, ..., n}. Then

S
T =

S

WWWU

a11 + b11 a21 + b21 · · · am1 + bm1
a12 + b12 a22 + b22 · · · am2 + bm2

...
...

. . .
...

a1n + b1n a2n + b2n · · · amn + bmn

T

XXXV
= A

T + B
T

Finally, let’s show that scalar multiplication comes through transposes. To this
end, consider

(cA)T =

S

WWWU

ca11 ca21 · · · cam1
ca12 ca22 · · · cam2

...
...

. . .
...

ca1n ca2n · · · camn

T

XXXV
= c

S

WWWU

a11 a21 · · · am1
a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

T

XXXV
= c A

T
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Lesson 9, Part 2: Matrix Operations- Suggested Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. For n = 4, create each of the following matrices

i. S41(3)
ii. D3(≠7)
iii. P14

2. Finish proofs of algebraic properties for matrix addition and scalar multipli-
cation
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