3.3 Matrices from Outer Products

Definition 3.16: Outer Product of Vectors

Let x € R™*! and y € R®*!. Then, the outer product between x and y
is the m x n matrix given by

x1 T1Yyr  T1yY2 - TiYn

T T2 ZT2Yyr  T2Y2 - T2Yn
xyl=| . |[n v - @)=

Tm ImlYlt Tm¥Y2 - TmUn

Notice that row i of the outer product xy’ is given by x;y’ for i =
1,2,...,m while column k of the outer product is given by yix for k =
1,2,...,n.

The outer product between two vectors can be very useful in computing many
multiplications between real numbers simultaneously. These matrices are also ex-
tremely helpful in generating new matrices.

EXAMPLE 3.3.1

Let {e;}"; € R™ ! be the set of elementary basis vectors for R™. We will define
each vector e; component-wise as follows
, 1 ifi=j
ei(j 1) = { 0 otherwise.
For n = 3, we see

1 0 0
e = |0f, e = |1], e3 = |0
0 0 1

Using these vectors and the outer product, we can create n x n matriz units
T
E’ik = eiek

with all zero entries except the entry in row ¢ and column k, which is equal to 1.
In the 3 x 3 case, there are a total of nine matrix units given as follows:

[1 0 0] [0 1 0] [0 0 1]
En=(0 0 0f, Ep= |0 0 0f, Es=[0 0 0],
0 0 0] 0 0 0 0 0 0]
[0 0 0] [0 0 0] [0 0 0]
Ex= (10 0f, Ex=[0 1.0/, Ep= [0 0 1f,
0 0 0] 0 0 0 0 0 0]
[0 0 0] [0 0 0] [0 0 0]
Ey= [0 0 0f, Ex= 0 0 0f, Ez=10 0 0
1 0 0] 0 1 0 0 0 1]

Notice, we can actually define matrix units in the m x n case, although to do so we
would need to take an outer product between vectors of different sizes. For now we
focus on the square matrix units as we will use these most frequently. I
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EXAMPLE 3.3.2

Lets suppose we want to create a 5 x 5 matrix 7" having the following structure:

0 0 0 0O
0 0 0 0O
= |0 3 0 00
0 -2 0 0 O
0 4 0 0 0
Then, we can define a 5 x 1 vector
0
0
T = 3
-2
4

. . . . 5
and we can write T = T el , where e, is the second elementary basis vector in R®.
I

Lesson 9, Part 1: Matrices from Outer Products- Suggested
Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. Create each of the following matrices using an outer product between two
vectors. Specifically state the two vectors you are using to write the outer

product:
0 0 0 0 O 0 00
0 0 0.0 0 8 8 8 7(; 0 00
A=1|1 -3 2 5 0|, B= 000 ol cC=10 4 0},
0 0 0 0 0 0% 0 o 0 -3 0
0 0 0 0.0 0 20
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3.4 Matrix Addition, Scalar Multiplication and the Transpose

Now that we have seen the use of matrices to model a selection of important
applications, let’s discuss operations that exist between matrices. We begin with
matrix-matrix addition and scalar-matrix multiplication. As we will see, these are
the natural analogs of the corresponding vector operations with the same name.

Definition 3.17: Matrix-Matrix Addition

If A, B € R™*™ are matrices with the same row and column dimensions,
then the matrix sum A + B is the matrix obtained by adding the corre-
sponding entries of A and B. In other words, the entry with row index 7
and column index k in the sum A + B is the sum a;;, + b;i.

EXAMPLE 3.4.1

In Section 3.1 we defined the n x n identify matrix I,, as the matrix containing all

ones on the main diagonals. We can use matrix addition to write the identity as
the sum of n matrix units as follows:

n n
2 : § T
In = Eii = €e; ei
i=1 i=1

Definition 3.18: Scalar-Matrix Multiplication

Suppose A € R™*™ is a matrix and « € R is a scalar. Then the scalar-
matrix product «- A is the matrix obtained by multiplying each entries
of A by the scalar . In other words, the entry with row index ¢ and
column index k in the product « - A is the product « a;g.

EXAMPLE 3.4.2

We can use matrix-matrix addition and scalar-matrix multiplication to write any
square matrix as the sum of matrix units. For A € R™*"  we have

n n
A= E E aik-eie{

i=1 k=1

For example, in the n = 2 case, we might write
2 -1 1 0 0 1 0 0 0 0
R Il Rl

=2.e1el +-1-ejel +-3-eyel +5-eyel
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EXAMPLE 3.4.3

Let’s consider two image vectors that compose faces from the Face Recognition
Project at MIT (http://courses.media.mit.edu/2004fall /mas622j/04.projects/faces/).
Each images is stored as a 128 x 128 black-and white photo. Here we take two images
from our RAW image data base (image numbers 2147 and 1734, respectively):

We will store the the image on the left in the matrix /1 and the image on the right
in the matrix F. Notice that M, F' € R128%128- Now, we can use matrix operations
to blend these two images together. In particular, let’s consider the new 128 x 128
blended matrix

1 1
B=_M+_-F
2 T3

This blended image matrix B is shown below:

This is a great example of how meaning can be introduced for the matrix-matrix
addition operation. [ ]
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There are a number of algebraic properties that hold for these operations be-
tween matrices.

1.
2.

ouok W

® N>

Commutativity of matrix addition: A+ B =B+ A
Associativity of matrix: A+ (B+C)=(A+B)+C
Additive Identity: A+0=0+A=A

Additive Inverses: A+ —A=-A+A=0
Distributivity of matrix addition: a(A 4+ B) = aA + aB
Distributivity of scalar addition: (a + b)A = aA + bA
Associativity of scalar multiplication: a (bA) = (ab)A

Multiplicative Identity of scalar multiplication: 14 = A

Theorem 16: Algebraic Properties of Matrix Operations

Let A, B,C € R™*™ and a,b € R. Then, all of the following are properties
of matrix addition:

Notice that the properties of matrix addition and scalar-matrix multiplication
are identical to the corresponding properties of vector addition and scalar-vector
multiplication.

Proof. Let A, B,C € R™*" and a,b € R. We begin by establishing commutativity
of matrix addition. Consider

[ a1 + b1y

a2 + bai
A+ B =

_aml + bml

[ 11 + ann
bo1 + a1

b1 + am1

=B+ A

a2 + b12
a2z + baa

am2 + bm2

b1z + a2
bao + a2

bma + ama

a1p + bip i
a2n + b2n

Qmn + bmn_

bin + ain ]
b2n + agn

bmn + Amn |

In this case, we’ve used the scalar properties of R and the component-wise definition
of matrix addition to confirm commutativity.
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Let’s also confirm associativity. Again, we begin by considering

a11 ai2

a21 a22
A+(B+C) =

Am1 Am?2

[ a1+ b1+ e
a1 + ba1 + o1

|Gm1 + bm1 + cm1

[ a1 + b1y
ao1 + b2y

(A+B)+C

a1z + bia
a2z + baa

_aml + anl am?2 + bm2

a1n b1 + c11 bia + ci2 bin + Cin

Q2n ba1 + c21 bao + c22 bap, + Con
+ .

Amn bml + Cm1 bm2 + Cm?2 bmn + Cmn

a1z + b1z + ci2
a2 + baa + co2

Qm2 + bma + Cm2

ain + bln
Qagn + b2n

Gy + bmn

A1n + bln + Cin
Qaon + b2n + con

mn + bmn + Cmn

C11 C12 Cin

C21 C22 Can
+ . .

Cml Cm2 Cmn

Again, we’ve borrowed the associativity of each coefficient from R. The other
proofs from this theorem follow from similar arguments and are left to the reader

as exercises.

O

of A is given by

Definition 3.19: Rank-one updates

Let A € R™*™ and vectors x € R™ and y € R™. Then, a rank one update

A+xy?

As we will see, rank one modifications of matrices play an important role in our so-
lutions for the linear-systems problem, the least-squares problem and the eigenvalue
problems. There are many important examples of rank one updates to the identity
matrix. Below are a few major classes of rank one updates that we will revisit in
our discussion of matrix-vector multiplication and linear systems problems.
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Definition 3.20: Shear Matrices

Let n € N. For i # k, we define an n x n shear matriz takes the form

Sik(c) =1, +c-e; ef

Notice that shear matrices are rank one updates to the identity matrix. Also,
shear matrices are the identity matrix with entry in row ¢ and column k equal to c.

EXAMPLE 3.4.4

Let’s look at S31(—5) in the n = 3 case. Notice

531(*5) = 13 + *5 - e3 e{

100 0
=10 1 0l +-5-|0[[1 0 0
0 0 1] 1

1 0 0] 000

= L 0f+] 000
0 0 1] [-5 0 0
(1.0 0

=1 010

-5 0 1
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Definition 3.21: Dialation Matrices

Let n € N. For j € {1,2,...,n}, we define an n x n dilation matriz

Dj(c)=Iy+(c—1)-eje]

EXAMPLE 3.4.5

For the n = 5 case, we can look at

Dy(5) =I5+ (5—1) - eyel

10000 0
0100 0 1
=001 0 0/+(5B-1)-|0[[0 1 0 0-0]
00010 0
00 0 0 1 0
1000 0] [t 0 000
01000 [05-17000
=100 10 0/+[0 0 1 0.0
00010 [0 0 010
00001 [0 0 001
10 0 0 0]

0500 0

=100 10 0

00010

0 0700 1)

As we will see, we can use this dilation matrix to scale an entire row or an entire
column of a matrix via matrix-matrix multiplication. [ ]
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Definition 3.22: Transposition Matrices

Let n € N. For i # k, we define the transposition matriz in R"*" to be
given by

n
T T T
P, =e;e;, +eye; + E eje;
J=1
J#ik

with e; e R” for alli =1,2,...,n.

Notice, we can form any transposition matrix by taking the n xn identity matrix
and swapping row ¢ with row k. Transposition matrices are an example of what is
know as a rank-two update.

EXAMPLE 3.4.6

Let’s consider the transposition matrix Py in R*** given by

4
T T
Pyy =ese; +ese; + E e;

j=1
J#2,4

[0 0 1 000 00 0 0
1 0 00 00 00 0 0
_0[0001]+0[o100}+0000+0010
0 1 00 00 00 0 0
(0 0 0 0] o 0 0 O 1 000 0
_0001+0000+0000
o0 0 o0 0000 001 0
0000 (0100 0 0 070
1 0 0 0]
o0 0 1
“loo0o 10
01 0 0]

[ |

These matrices are a special example of a much larger class of matrices known
as permutation matrices. As we will see, we can generate any permutation matrix
as the product of a series of transposition matrices.
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1

Qi k,0) =

0

of (n 4 2) nonzero entries.

Definition 3.23: Givens Rotation

A Givens rotation is an n x n matrix of the form

0 --- 0
s
e
0o

1

where ¢ = cos(f) and s = sin(f). The Givens rotation matrix hasa total
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Definition 3.24: Gauss Transform

Let n,k € N with £k < n. Let 7 € R™ be a vector whose the first &
components are zero. In other words, suppose 7 is in the form

TT:[O v 0 Thgr e Tn]
k

Then, a Gauss transformation is a matrix
T
Ly=1,—Tey

We call the vector 7 a Gauss vector.

EXAMPLE 3.4.7

Let n = 5 and k = 2. We define the 5 x 1 vector 77 = [O 0 3 -2 4]. The
corresponding Gauss transformation is given by

1 0000
0 100 0
Ly=Is+71el=10 3 1 0 0
0 -2 0 1 0
0 4 0 0 1

As we will see, Gauss transformations, Shear Matrices, Dilation matrices and
Transposition Matrices are extremely helpful tools to create a matrix deseription of
Gaussian elimination. We will use these matrices heavily in creating full solution
sets to linear-systems problems. Each of these matrices can be written as the sum
of special matrix units.
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Definition 3.25: Transpose of a Matrix

Let A € R™*™ be a matrix with real-valued coefficients. The transpose
of A, denoted by AT, is defined to be the matrix AT € R™*™ such that
the ith row of AT is the row vector formed by transposing the ith column
vector of A.

Theorem 17: Algebraic Properties of Matrix Transposes

Let A, B € R™*™ and ¢ € R. Then, all of the following are properties of
matrix transposes:

T
i. Two Transposes: ((A)T> =A
ii. Transpose of a Sum: (A + B)T = AT + BT

ili. Scalars come out of Transposes: (cA)T = c AT

iv. Transpose of a Matrix Product: (A - B)T = BT AT

Proof. Let A, B € R™*™ and ¢ € R. Let’s start by establishing property i. about
taking two transposes of a matrix. To this end, let

C=A"

Since A is of size m x n, we know that C' has n rows and m columns. Moreover, we
see by the definition of the transpose that cx;'= a; for each i € {1,2,...,m} and
k€ {1,2,...,n}. Now, setting D = CT we see d;;, =cx; = a;,. Thus, we conclude
that D = A, which is what we wanted to show.

Next, let’s consider the m X n matrix

S=A+1B

We know s;5=a;x + bix, for each i € {1,2,...,m} and k € {1,2,...,n}. Then

air +bir agt +bar - G+ bma
a12 +bi2 a4 baa - ama + by

ST = . : : : = A"+ BT
A1n + bln A2np + b2n tee Amn + bmn

Finally, let’s show that scalar multiplication comes through transposes. To this
end, consider

cayp cazr - Camil @11 a1 - amil
( A)T Carz2 Cazz - CAm2 12 a2 - Am2 AT
c = =c =c
Caip CA2p s CQmn A1p  A2n o Omn
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Lesson 9, Part 2: Matrix Operations- Suggested Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. For n = 4, create each of the following matrices

i, Sui(3)
ii. Dy(—7)
ili. Py

2. Finish proofs of algebraic properties for matrix addition and scalar multipli-
cation
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