
3.2 Anatomy of Matrices
By identifying special structure in the entries of a matrix, we can develop fast

and e�cient solutions to our four fundamental problems. In this section, we study
a number of important features of matrix notation and categorize powerful patterns
in the anatomy of matrices.

For m, n œ N, a rectangular matrix A œ Rm◊n is an array of real numbers
organized into m rows and n columns. Because the row dimension m and the
column dimension n are both natural numbers, the following three options exist:

i. A matrix is tall and narrow if m > n. All tall and narrow matrices have
more rows than columns.

A =

S

WWWWWWWWU

a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

...
. . .

...
am1 · · · amn

T

XXXXXXXXV

ii. A matrix is square if m = n. All square matrices have the same number of
rows as columns.

A =

S

WWWU

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

T

XXXV

iii. A matrix is short and wide if m < n. All short and wide matrices have less
rows than columns.

A =

S

WU
a11 a12 · · · a1m · · · a1n

...
...

. . .
...

. . .
...

am1 am2 · · · amm · · · amn

T

XV

EXAMPLE 3.2.1
Any graph, directed or not, with more nodes than edges will give rise to an incidence
matrix that is tall and narrow. For example, consider th directed graph with three
nodes and two edges given below.

•
u1

•
u2

•
u3

•
u4

•
u5

e1 e2 e3 e4

The corresponding 4 ◊ 5 incidence matrix is given by

A =

S

WWU

1 ≠1 0 0 0
0 1 ≠1 0 0
0 0 1 ≠1 0
0 0 0 1 ≠1

T

XXV

This matrix has more rows than columns.
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EXAMPLE 3.2.2
Vandermonde matrix with more discrete points than the degree of the polynomial
(introduction to the least squares problem).

EXAMPLE 3.2.3
Incidence matrix for a digraph with more edges than nodes

EXAMPLE 3.2.4
Short and wide vertex matrix for a 3D polygon

We pay special attention to square matrices when considering the square linear-
systems problem and the eigenvalue problem. The general linear-systems problem
usually involves short and wide matrices while the full-rank least-square problem
focuses on tall and narrow matrices. All three types of matrices arise in the matrix-
vector multiplication problem, though square matrices have special properties. One
of the first steps to craft one of the four fundamental problems from a modeling
context is to create a matrix and connect the physical model to the proper matrix
equation. In any case, the shape of the matrix may provide guide you in deciding
which techniques are applicable to solve your problem. Hence, it is very helpful to
immediately identify the shape of any matrix that is written in a matrix equation.

Subscripts on Matrices
Matrix notation is used to compress information. When referring to matrix A œ

Rm◊n, we are actually referring to m·n separate scalar-valued entries. Each of these
elements has a unique row and column index and is organized into our rectangular
array. The power of matrix notation is to suppress all of this information and allow
us to quickly encapsulate algebraic relations on the entire system with a limited
number of symbols. For example, in the matrix-vector multiplication problem, we
write only a few symbols A · x = b to state the entire problem. Underneath this
notation, we encode the entire modeling scheme and execute many simultaneous
scalar operations with very specific structure. Compressing information in this way
is extremely powerful when used appropriately but can lead to confusion for the
untrained observer.

With this in mind, you should get in the habit of specifically identifying the row
and column dimensions of every matrix and vector you see in a matrix equation.
This can be done using subscript notation. For example, a shorthand way to specify
that A has m rows and n columns is to write Am◊n. The same subscript notation
can be helpful to write dimensions on the full array.

S

U
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

T

V

3◊4

Of course, subscript notation should not be a substitute for the matrix definition
using set theory A œ R3◊4. However, this can be a convenient tool when analyze
a matrix equation. Seasoned linear algebraists usually identify the dimensions of
matrices as a pre-requisite to analyzing any matrix equation.

Entries of a Matrix
A zero entry of a matrix is an entry aik = 0 while a nonzero entry is given by

aik ”= 0. By studying patterns in the locations of zero and nonzero entries, we can
customize our solution techniques to exploit the structure of a given matrix.
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Definition 3.5: Leading Entry

The leading entry of a row of a matrix is the first nonzero element in
that row when reading from left to right.

We use leading entries in our solution techniques for linear-systems problems,
least-squares problems and eigenvalue problems.

EXAMPLE 3.2.5
Identify the leading entry of row 4 for a incidence matrix of a given di-graph.

The total number of elements of our matrix is given by

numel(A) = mn,

since there are m rows each of which contains n entries. The total number of
nonzero entries in a matrix, denoted as nnz(A), is the number of nonzero entries of
our matrix. To count the total number of zero entries of a matrix, we calculate

numel(A) ≠ nnz(A)

1 ≠ ı ≠ ◊ ≠ 0 Notation
Many beautiful features of matrix algebra rely on specifically exploiting special

structure in the location of nonzero entries of a matrix. We identify the sparsity
structure of a matrix by specifying the exact location of all zero entries, nonzero
entries and entries that can take any value. Below are some examples of general
patterns we use to identify the sparsity structure of matrices.

S

WWU

1 0 0 0
◊ 1 0 0
◊ ◊ 1 0
◊ ◊ ◊ 1

T

XXV ,

S

WWWWU

ı ◊ ◊ ◊ ◊
0 ı ◊ ◊ ◊
0 0 ı ◊ ◊
0 0 0 ı ◊
0 0 0 0 ı

T

XXXXV
,

S

WWWWWWU

◊ ◊ ◊ ◊ ◊
ı ◊ ◊ ◊ ◊
0 ı ◊ ◊ ◊
0 0 ı ◊ ◊
0 0 0 ı ◊
0 0 0 0 ı

T

XXXXXXV
,

S

WWU

◊ ◊ 0 0
◊ ◊ ◊ 0
0 ◊ ◊ ◊
0 0 ◊ ◊

T

XXV

The 1 represents entries of the matrix that must be equal to one while the ı’s
designate nonzero entries. The ◊ symbols represent entries that may be any real
number including zero. Finally, in each of these cases, the symbol 0 specifies the
location of the zero entries. Some authors also leave all entries that are zero blank,
as in the example below

S

WWWWU

ı 0 0 0 0
0 ı 0 0 0
0 0 ı 0 0
0 0 0 ı 0
0 0 0 0 ı

T

XXXXV
=

S

WWWWU

ı

ı

ı

ı

ı

T

XXXXV

In this text, we will explicitly identify all zero entries using the symbol 0 unless
otherwise stated.

EXAMPLE 3.2.6
Given a few matrices, draw the sparsity structure using the 1 ≠ ı ≠ ◊ ≠ 0 notation.
Focus on identifying patterns in the sparsity structure rather than focusing on the
exact location of zeros.
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Main Diagonal
The main diagonal entries of A are elements with equal row and column

indices. In other words, we say that aik is on the main diagonal of A if i = k.
The main diagonal of A is the set of all diagonal entries of A.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV

The non-diagonal entries of A are entries that are not on the main diagonal.
Thus, aik is a non-diagonal entry if i ”= k.
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Definition 3.6: Diagonal Matrix

Let D œ Rn◊n be a given, square matrix. We say that D is diagonal if
dik = 0 for all i ”= k. Diagonal matrices take the form

D =

S

WWWWU

d11 0 · · · 0

0 d22
. . .

...
...

. . . . . . 0
0 · · · 0 dnn

T

XXXXV

In this case, the entries on the main diagonal dii are any real numbers
and are not necessarily zero.

Definition 3.7: Identity Matrix

Let In œ Rn◊n be n ◊ n identity matrix given by

In =

S

WWWWU

1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

T

XXXXV

In this case, we can define the identity matrix using the individual coef-
ficients as follows

In(i, k) =
;

1 if i = k,

0 if i ”= k.
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Lower Triangular Entries
The lower-triangular entries of a matrix A are all entries on or below the

main diagonal. Thus, we say that element aik is a lower-triangular entry if and only
if i Ø k.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV

The strictly lower-triangular entries of a matrix are all entries aik with
i > k.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV

Definition 3.8: Lower-Triangular Matrix

Let L œ Rn◊n be a given, square matrix. We say that L is lower-triangular
if ¸ik = 0 for all i < k. Lower-triangular matrices take the form

L =

S

WWWWU

¸11 0 · · · 0

¸21 ¸22
. . .

...
...

. . . . . . 0
¸n1 ¸n2 · · · ¸nn

T

XXXXV
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Definition 3.9: Unit Lower-Triangular Matrix

Let L œ Rn◊n be a given, square matrix. We say that L is a unit lower-
triangular matrix if ¸ik = 0 for all i < k and ¸ik = 1 for all i = k. Unit
lower-triangular matrices take the form

L =

S

WWWWU

1 0 · · · 0

¸21 1
. . .

...
...

. . . . . . 0
¸n1 ¸n2 · · · 1

T

XXXXV

Upper Triangular Entries
The upper-triangular entries of a matrix A are all entries on or above the

main diagonal. Thus, we say that element aik is a upper-triangular entry if and
only if i Æ k.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV

The strictly upper-triangular entries of a matrix are all entries aik with
i < k.

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV
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Definition 3.10: Upper-Triangular Matrix

Let U œ Rn◊n be a given, square matrix. We say that U is upper-
triangular if uik = 0 for all i > k. In other words, upper-triangular
matrices take the form

U =

S

WWWWU

u11 u12 · · · u1n

0 u22
. . . u2n

...
. . . . . .

...
0 · · · 0 unn

T

XXXXV

Bands of a Matrix
A diagonal band of a matrix A œ Rm◊n is a set of entries with a constant

di�erence between the row and column indices. In other words, for a given d œ
{≠(n ≠ 1), ≠(n ≠ 2), ..., ≠1, 0, 1, ..., (m ≠ 2), (m ≠ 1)}, we call the dth band of A the
set of all aik such that i ≠ k = d.

EXAMPLE 3.2.7
The main diagonal of a matrix is the 0 band of a matrix

EXAMPLE 3.2.8
The +1 band of a matrix. The -1 band of a matrix.

The upper-triangular bands are all bands of a matrix such that i ≠ k Æ 0.
There are a total of (m≠1) strictly lower triangular bands of a matrix, 1 diagonal

band and (n ≠ 1) strictly upper-triangular bands.
The lower-triangular bands are all bands of a matrix such that k > 0.
The lower bandwidth of a matrix is the number d¸ such that if aik = 0 for all

i ≠ k > d¸

The upper bandwidth of a matrix is the number du such that if aik = 0 for
all i ≠ k < du

Type Lower Upper
of Matrix Bandwidth Bandwidth

diagonal 0 0
upper-triangular 0 n ≠ 1
lower-triangular m ≠ 1 0
tridiagonal 1 1

c• Je�rey A. Anderson 124 vS20190403

DRAFT



Colon Notation

Definition 3.11: Colon Notation

A handy way to specify individual columns or rows of a matrix is to use
colon notation. If A œ Rm◊n, then A(:, k) œ R

m◊1 designates the kth
column of A:

A(:, k) =

S

WWWU

a1k

a2k

...
amk

T

XXXV

for k œ {1, 2, ..., n}. Similarly, A(i, :) œ R1◊n designates the ith row of A:

A(i, :) =
#
ai1 ai2 · · · ain

$

for i œ {1, 2, ..., m}
This notation originated from the MATLAB computing language. As

we will see, we can use this notation is extremely useful in focusing on
vector-level computational issues.

Throughout this text, we will use i to representing row indices, k to represent
column indices, and j to represent auxiliary indexing variables.

EXAMPLE 3.2.9
Let’s take a look at a di�erent digraph with 4 nodes and 6 edges:

N1 N2 N3

N4

e1

e2 e3

e4
e5

e6

The incidence matrix A for this directed graph can be read from the table

Incidence Matrix
e1 e2 e3 e4 e5 e6

N1 1 1 0 0 0 0
N2 0 -1 1 1 0 -1
N3 0 0 -1 0 1 0
N4 -1 0 0 -1 -1 1

Here, A œ R4◊6 since there are 4 vertices and 6 edges of the graph. Using colon no-
tation, we focus on the second node of this graph A(2, :) =

#
0 ≠1 1 1 0 ≠1

$

to see that edges 2 and 6 enter node 2 and edges 3 and 4 leave node 2. Similarly,
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we conclude that edge 4 leave node 2 and enters node 4 since

A(:, 4) =

S

WWU

0
1
0

≠1

T

XXV

Rows of a Matrix

Definition 3.12: Row Partition of a Matrix

We can also write A œ Rm◊n using a row paritition: Let

{A(1, :), A(2, :), ..., A(m, :)} ™ R1◊n

be a collection of m separate 1 ◊ n row vectors. Organize each row vector
A(i, :) one on top of the other to form the rectangular array:

A =

S

WWWU

A(1, :)
A(2, :)

...
A(m, :)

T

XXXV

In this row partition, A(i, :) is the ith row of matrix A as is given by

A(i, :) =
#
ai1 ai2 · · · ain

$

Given an m ◊ n matrix A, each row of A is a 1 ◊ n short and wide matrix. We
denote our rows as

A(i, :) = Aiú =
#
ai1 ai2 · · · ain

$

The n individual real-valued entries in any row have identical row index values.

Definition 3.13

Let A œ Rm◊n. Define the map

Rowi(A) = A(i, :)

for 1 Æ i Æ m.

The Row operator takes in a row index i and a matrix to produce the ith row of
the given matrix.
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Columns of a Matrix

Definition 3.14: Column Partition of a Matrix

Consider a matrix A œ R
m◊n. The column partition of A is a descrip-

tion of the matrix A in terms of the column vectors that make up the
matrix. Let {A(:, 1), A(:, 2), ..., A(:, n)} ™ Rm◊1 be a collection of the n

separate m ◊ 1 column vectors. Organize these vectors side by side to
form the rectangular array:

A =
#
A(:, 1) A(:, 2) · · · A(:, n)

$

In this column partition, A(:, k) is the kth column of matrix A given by

A(:, k) =

S

WWWU

a1k

a2k

...
amk

T

XXXV

The column partition of a matrix is another way to organize and define a matrix.
The column partition of a matrix requires that we define n separate vectors, each
one having dimension m ◊ 1. This partition will be very helpful when we interpret
the matrix-vector product Ax as linear combinations of the columns of the matrix
A with scaling weights defined by the entries of x.

In contrast, to use the entry-by-entry definition of the matrix A, we must define
each of the m · n in the entire matrix individually. This specification can be very
helpful in creating matrix models from disparate data and when storing matrices
in computers. However, we will tend away from using the entry-by-entry definition
to interpret the matrix-vector multiplication operations.

Every column vector is an m ◊ 1 tall and narrow matrix. We use column
vectors extensively to describe our four fundamental problems and to model many
diverse phenomenon. Whenever we refer to a vector without explicitly stating it’s
dimensions, we always mean a column vector.

We denote each column vector as

A(:, k) = Aúk =

S

WWWU

a1k

a2k

...
amk

T

XXXV

The m individual real-valued entries in any column have identical column indices.

Definition 3.15

Let A œ Rm◊n. Define the map

Columnk(A) = A(:, k)

for 1 Æ k Æ n.
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EXAMPLE 3.2.10
Let’s look back on Definition 3.7, which gave the entry-by-entry definition of the
identity matrix. We can define also define the n ◊ n identity matrix using a column
partition. We write

In =
#
e1 e2 · · · en

$

where the kth column of the identity matrix In(:, k) = ek is given by the kth
elementary basis vector, as defined in Example 3.3.1.
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3.3 Matrices from Outer Products

Definition 3.16: Outer Product of Vectors

Let x œ Rm◊1 and y œ Rn◊1. Then, the outer product between x and y
is the m ◊ n matrix given by

xyT =

S

WWWU

x1
x2
...

xm

T

XXXV
#
y1 y2 · · · xn

$
=

S

WWWU

x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn

...
...

. . .
...

xmy1 xmy2 · · · xmyn

T

XXXV

Notice that row i of the outer product xyT is given by xiyT for i =
1, 2, ..., m while column k of the outer product is given by ykx for k =
1, 2, ..., n.

The outer product between two vectors can be very useful in computing many
multiplications between real numbers simultaneously. These matrices are also ex-
tremely helpful in generating new matrices.

EXAMPLE 3.3.1
Let {ei}n

i=1 ™ Rn◊1 be the set of elementary basis vectors for Rn. We will define
each vector ei component-wise as follows

ei(j, 1) =
;

1 if i = j,

0 otherwise.

For n = 3, we see

e1 =

S

U
1
0
0

T

V , e2 =

S

U
0
1
0

T

V , e3 =

S

U
0
0
1

T

V .

Using these vectors and the outer product, we can create n ◊ n matrix units
Eik = eieT

k

with all zero entries except the entry in row i and column k, which is equal to 1.
In the 3 ◊ 3 case, there are a total of nine matrix units given as follows:

E11 =

S

U
1 0 0
0 0 0
0 0 0

T

V , E12 =

S

U
0 1 0
0 0 0
0 0 0

T

V , E13 =

S

U
0 0 1
0 0 0
0 0 0

T

V ,

E21 =

S

U
0 0 0
1 0 0
0 0 0

T

V , E22 =

S

U
0 0 0
0 1 0
0 0 0

T

V , E23 =

S

U
0 0 0
0 0 1
0 0 0

T

V ,

E31 =

S

U
0 0 0
0 0 0
1 0 0

T

V , E32 =

S

U
0 0 0
0 0 0
0 1 0

T

V , E33 =

S

U
0 0 0
0 0 0
0 0 1

T

V .

Notice, we can actually define matrix units in the m ◊ n case, although to do so we
would need to take an outer product between vectors of di�erent sizes. For now we
focus on the square matrix units as we will use these most frequently.
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EXAMPLE 3.3.2
Lets suppose we want to create a 5 ◊ 5 matrix T having the following structure:

T2 =

S

WWWWU

0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 ≠2 0 0 0
0 4 0 0 0

T

XXXXV

Then, we can define a 5 ◊ 1 vector

· =

S

WWWWU

0
0
3

≠2
4

T

XXXXV

and we can write T = · eT

2 , where e2 is the second elementary basis vector in R5.

Lesson 9, Part 1: Matrices from Outer Products- Suggested

Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. Create each of the following matrices using an outer product between two
vectors. Specifically state the two vectors you are using to write the outer
product:

A =

S

WWWWU

0 0 0 0 0
0 0 0 0 0
1 ≠3 2 5 0
0 0 0 0 0
0 0 0 0 0

T

XXXXV
, B =

S

WWU

0 0 0 0
0 0 0 ≠7
0 0 0 0
0 0 0 0

T

XXV , C =

S

WWWWU

0 0 0
0 0 0
0 4 0
0 ≠3 0
0 2 0

T

XXXXV
,
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