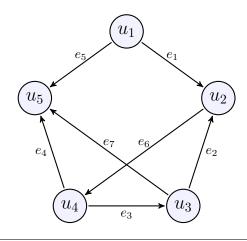

## Math 2B: Applied Linear Algebra

## Multiple Choice For the problems below, circle the correct response for each question.

1. Hooke's Law is a principle of physics stating that the force needed to extend or compress a spring by some distance is proportional to that distance. Recall from class that we can set up an experiment to verify Hooke's law using a spring, various masses, a scale, and a measuring stick. Below are five collected data points relating to Hooks Law.

| Measurement<br>Number | Position $x$ in Meters (m) | Applied mass $m$ in kilograms |
|-----------------------|----------------------------|-------------------------------|
| 1                     | 0.140                      | 0.000                         |
| 2                     | 0.191                      | 0.100                         |
| 3                     | 0.248                      | 0.200                         |
| 4                     | 0.303                      | 0.300                         |
| 5                     | 0.360                      | 0.400                         |




From this data, we can calculate  $u_i$ , the displacement of movable end of spring in measurement i. We can also create a mathematical model in the form

$$y_i = b + k \cdot u_i$$

where  $y_i$  is the modeled force associated with displacement  $u_i$ . Choose the correct matrix-vector model for generating vector  $\mathbf{y} \in \mathbb{R}^5$  given any choice of  $b, k \in \mathbb{R}$ .

Consider the directed graph given below. Use this graph to fill in the corresponding incidence matrix. Use your entries for the incidence matrix to identify the correct answer for problems 2 - 3.



| Incidence Matrix                               |       |       |       |       |       |
|------------------------------------------------|-------|-------|-------|-------|-------|
|                                                | $u_1$ | $u_3$ | $u_3$ | $u_4$ | $u_5$ |
| $e_1$                                          |       |       |       |       |       |
| $egin{array}{c} e_2 \\ e_3 \\ e_4 \end{array}$ |       |       |       |       |       |
| $e_3$                                          |       |       |       |       |       |
| $e_4$                                          |       |       |       |       |       |
| $egin{array}{c} e_5 \ e_6 \ e_7 \end{array}$   |       |       |       |       |       |
| $e_6$                                          |       |       |       |       |       |
| $e_7$                                          |       |       |       |       |       |
|                                                |       |       |       |       |       |

2. Let A represent the  $7 \times 5$  incidence matrix. Then the entry  $a_{53}$  is given by which of the following:

A. 
$$a_{53} = 2$$

B. 
$$a_{53} = -1$$

**C.** 
$$a_{53} = 0$$
 D.  $a_{53} = 1$ 

D. 
$$a_{53} = 1$$

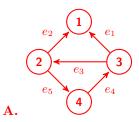
E. 
$$a_{53} = e_7$$

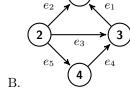
3. Let A represent the  $7 \times 5$  incidence matrix. Then  $[(A(6,:)]^T$  is given by which of the following:

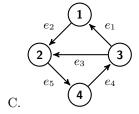
A. 
$$\begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

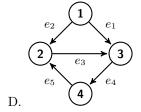
B. 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

$$C. \begin{bmatrix} 0\\0\\1\\0\\-1 \end{bmatrix}$$

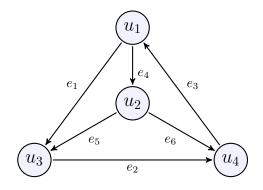

D. 
$$\begin{bmatrix} -1\\0\\0\\0\\1 \end{bmatrix}$$


E. 
$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$


4. Let the following matrix  $A \in \mathbb{R}^{5\times 4}$  be the incidence matrix for a directed graph:


| Incidence Matrix |       |       |       |       |
|------------------|-------|-------|-------|-------|
|                  | $u_1$ | $u_3$ | $u_3$ | $u_4$ |
| $e_1$            | -1    | 0     | 1     | 0     |
| $e_2$            | -1    | 1     | 0     | 0     |
| $e_3$            | 0     | -1    | 1     | 0     |
| $e_4$            | 0     | 0     | -1    | 1     |
| $e_5$            | 0     | 1     | 0     | -1    |

This matrix corresponds to which of the following directed graphs:










Consider the following directed graph. Use this graph to find the correct answer for problem 6.

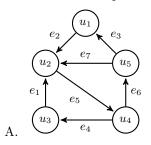


| Incidence Matrix |       |       |       |  |
|------------------|-------|-------|-------|--|
| $u_1$            | $u_3$ | $u_3$ | $u_4$ |  |
|                  |       |       |       |  |
|                  |       |       |       |  |
|                  |       |       |       |  |
|                  |       |       |       |  |
|                  |       |       |       |  |
|                  |       |       |       |  |
|                  |       |       |       |  |

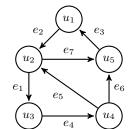
- 5. Let A represent the  $6\times 4$  incidence matrix. Find  $\left[A(2,:)\right]^T\cdot \left[A(5,:)\right]^T\colon$ 
  - A. 2

B. 1

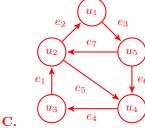
C. 0

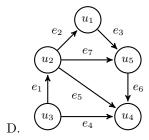

D. -1

E. -2

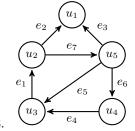

6. Let the following  $5 \times 7$  matrix be the incidence matrix for a directed graph:

$$A = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$


This matrix corresponds to which of the following directed graphs:

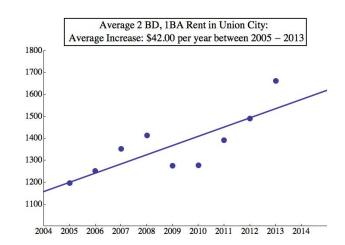



В.




(






E.

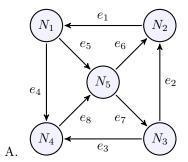


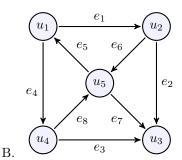
7. Consider the following data set that describes the average rent levels for a rental unit with 2 bedrooms and 1 bathroom (2Bd/1Ba) in Union City, CA.

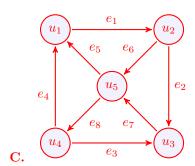
| Index | Year  | Average Rent      |
|-------|-------|-------------------|
| i     | $t_i$ | Level $R$ (in \$) |
| 1     | 2005  | \$1,197           |
| 2     | 2006  | \$1,252           |
| 3     | 2007  | \$1,353           |
| 4     | 2008  | \$1,413           |
| 5     | 2009  | \$1,275           |
| 6     | 2010  | \$1,277           |
| 7     | 2011  | \$1,392           |
| 8     | 2012  | \$1,490           |
| 9     | 2013  | \$1,663           |



From this data, we can model the rent for a 2Bd/1Ba unit using a linear function in the form


$$R_i = R(t_i) = b + m \cdot t_i$$


where  $R_i$  is the modeled monthly rent during year  $t_i$ . Choose the correct matrix-vector model for generating vector  $\mathbf{R} \in \mathbb{R}^9$  given any choice of  $b, m \in \mathbb{R}$ .


8. Let the following matrix  $A^T \in \mathbb{R}^{8 \times 5}$  be the incidence matrix for a directed graph:

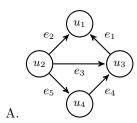
$$A^T = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

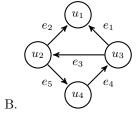
Then, this is the incidence matrix for which of the following directed graphs:

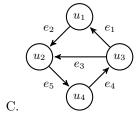


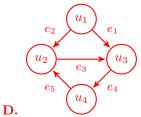








9. Let the following matrix  $A \in \mathbb{R}^{4 \times 5}$  be the incidence matrix for a directed graph:


Incidence Matrix


| meracinee matrix |       |       |       |       |
|------------------|-------|-------|-------|-------|
|                  | $u_1$ | $u_3$ | $u_3$ | $u_4$ |
| $\overline{e_1}$ | 1     | 0     | -1    | 0     |
| $e_2$            | 1     | -1    | 0     | 0     |
| $e_3$            | 0     | 1     | -1    | 0     |
| $e_4$            | 0     | 0     | 1     | -1    |
| $e_5$            | 0     | -1    | 0     | 1     |

This matrix corresponds to which of the following directed graphs:







