
Math 2B: Applied Linear Algebra

Multiple Choice For the problems below, circle the correct response for each question.

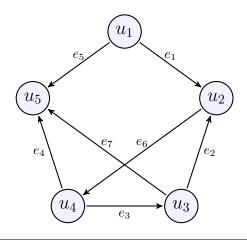
1. Hooke's Law is a principle of physics stating that the force needed to extend or compress a spring by some distance is proportional to that distance. Recall from class that we can set up an experiment to verify Hooke's law using a spring, various masses, a scale, and a measuring stick. Below are five collected data points relating to Hooks Law.

Measurement	Position x	Applied mass m
Number	in Meters (m)	in kilograms
1	0.140	0.000
2	0.191	0.100
3	0.248	0.200
4	0.303	0.300
5	0.360	0.400

From this data, we can calculate u_i , the displacement of movable end of spring in measurement i. We can also create a mathematical model in the form

$$y_i = b + k \cdot u_i$$

where y_i is the modeled force associated with displacement u_i . Choose the correct matrix-vector model for generating vector $\mathbf{y} \in \mathbb{R}^5$ given any choice of $b, k \in \mathbb{R}$.


A.
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 0.140 \\ 1 & 0.191 \\ 1 & 0.248 \\ 1 & 0.303 \\ 1 & 0.360 \end{bmatrix} \begin{bmatrix} b \\ k \end{bmatrix}$$

B.
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & 0.0 \\ 1 & 0.1 \\ 1 & 0.2 \\ 1 & 0.3 \\ 1 & 0.4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ 1 & 0.4 \end{bmatrix}$$

$$\begin{bmatrix} 0.140 \\ 0.191 \\ 0.248 \\ 0.303 \\ 0.360 \end{bmatrix} \begin{bmatrix} b \\ k \end{bmatrix} \qquad \text{B.} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & 0.0 \\ 1 & 0.1 \\ 1 & 0.2 \\ 1 & 0.3 \\ 1 & 0.4 \end{bmatrix} \begin{bmatrix} b \\ k \end{bmatrix} \qquad \text{C.} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & 0.000 \\ 1 & 0.051 \\ 1 & 0.108 \\ 1 & 0.163 \\ 1 & 0.220 \end{bmatrix} \begin{bmatrix} b \\ k \end{bmatrix}$$

D.
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0.140 & 0.0 \\ 0.191 & 0.1 \\ 0.248 & 0.2 \\ 0.303 & 0.3 \\ 0.360 & 0.4 \end{bmatrix} \begin{bmatrix} b \\ k \end{bmatrix}$$

Consider the directed graph given below. Use this graph to fill in the corresponding incidence matrix. Use your entries for the incidence matrix to identify the correct answer for problems 2 - 3.

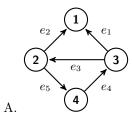
Incidence Matrix					
	u_1	u_3	u_3	u_4	u_5
e_1					
e_2					
e_2 e_3 e_4					
e_4					
$egin{array}{c} e_5 \ e_6 \ e_7 \end{array}$					
e_6					
e_7					

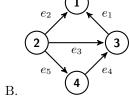
- 2. Let A represent the 7×5 incidence matrix. Then the entry a_{53} is given by which of the following:
 - A. $a_{53} = 2$
- B. $a_{53} = -1$
- C. $a_{53} = 0$ D. $a_{53} = 1$
- 3. Let A represent the 7×5 incidence matrix. Then $[(A(6,:)]^T$ is given by which of the following:

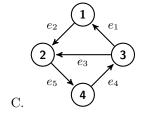
$$A. \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

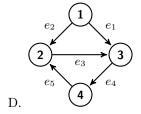
B.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

$$C. \begin{bmatrix} 0\\0\\1\\0\\-1 \end{bmatrix}$$

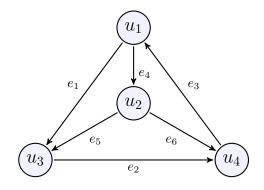

$$D. \begin{bmatrix} -1\\0\\0\\0\\1 \end{bmatrix}$$


E.
$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$


4. Let the following matrix $A \in \mathbb{R}^{5 \times 4}$ be the incidence matrix for a directed graph:


Incidence Matrix					
	u_1	u_3	u_3	u_4	
e_1	-1	0	1	0	
e_2	-1	1	0	0	
e_3	0	-1	1	0	
e_4	0	0	-1	1	
e_5	0	1	0	-1	

This matrix corresponds to which of the following directed graphs:



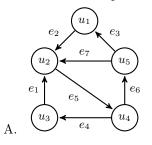
Consider the following directed graph. Use this graph to find the correct answer for problem 6.

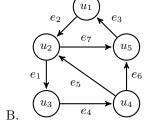
Incidence Matrix						
	u_1	u_3	u_3	u_4		
e_1						
e_2						
e_3						
e_4 e_5 e_6						
e_5						
e_6						

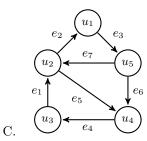
- 5. Let A represent the 6×4 incidence matrix. Find $\left[A(2,:)\right]^T\cdot \left[A(5,:)\right]^T$:
 - A. 2

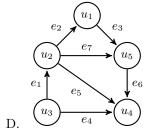
B. 1

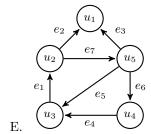
C. 0

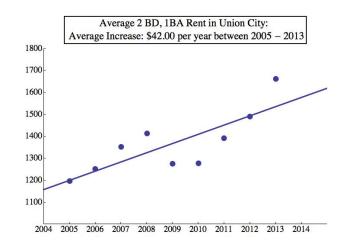

D. -1


E. -2


6. Let the following 5×7 matrix be the incidence matrix for a directed graph:


$$A = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$


This matrix corresponds to which of the following directed graphs:

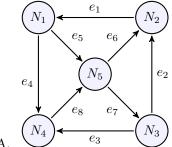


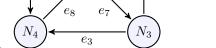
7. Consider the following data set that describes the average rent levels for a rental unit with 2 bedrooms and 1 bathroom (2Bd/1Ba) in Union City, CA.

Index	Year	Average Rent
i	t_i	Level R (in \$)
1	2005	\$1,197
2	2006	\$1,252
3	2007	\$1,353
4	2008	\$1,413
5	2009	\$1,275
6	2010	\$1,277
7	2011	\$1,392
8	2012	\$1,490
9	2013	\$1,663

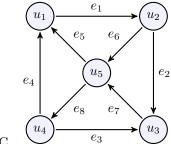
From this data, we can model the rent for a 2Bd/1Ba unit using a linear function in the form

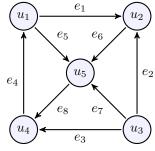
$$R_i = R(t_i) = b + m \cdot t_i$$

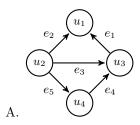

where R_i is the modeled monthly rent during year t_i . Choose the correct matrix-vector model for generating vector $\mathbf{R} \in \mathbb{R}^9$ given any choice of $b, m \in \mathbb{R}$.

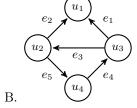

$$\begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ A. \begin{bmatrix} 1 & 2005 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} 1 & 2005 \\ 1 & 2006 \\ R_7 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} 2005 & 1197 \\ 2006 & 1252 \\ 2007 & 1353 \\ 2007 & 1353 \\ 2007 & 1353 \\ 2008 & 1413 \\ 2009 & 1275 \\ 2010 & 1277 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad C. \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ 1 & 1252 \\ 1 & 1252 \\ R_3 \\ 1 & 1275 \\ 1 & 1277 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ 1 & 1252 \\ 1 & 1413 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_6 \\ R_7 \\ R_8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ 1 & 1275 \\ R_8 \\ R_9 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} \quad D. \begin{bmatrix} b \\ m \end{bmatrix} \quad D.$$

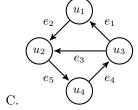
8. Let the following matrix $A^T \in \mathbb{R}^{8 \times 5}$ be the incidence matrix for a directed graph:

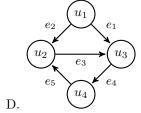

$$A^T = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$


Then, this is the incidence matrix for which of the following directed graphs:

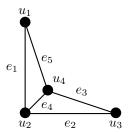

D.

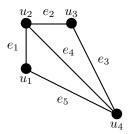

9. Let the following matrix $A \in \mathbb{R}^{4 \times 5}$ be the incidence matrix for a directed graph:


Incidence Matrix

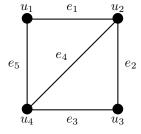

11101				
	u_1	u_3	u_3	u_4
$\overline{e_1}$	1	0	-1	0
e_2	1	-1	0	0
e_3	0	1	-1	0
e_4	0	0	1	-1
e_5	0	-1	0	1

This matrix corresponds to which of the following directed graphs:



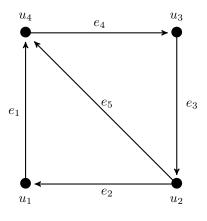


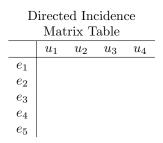
Free Response

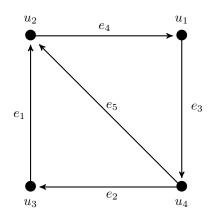

1. For each of the undirected graphs below, find the associated incidence matrix

Undirected Incidence						
Matrix Table						
	u_1	u_2	u_3	u_4		
e_1						
e_2	$egin{array}{c c} e_1 & & \\ e_2 & & \end{array}$					
e_3 e_4	e_3					
e_4						
e_5						

Undirected Incidence Matrix Table						
	u_1	u_2	u_3	u_4		
e_1						
e_2						
e_3						
e_4						
e_5						




Undirected Incidence Matrix Table					
	u_1	u_2	u_3	u_4	
e_1					
e_1 e_2					
e_3 e_4 e_5					
e_4					
e_5					


(See Reverse)

2. What do you notice about each of the incidence matrices from question 1 above? How does your observation relate to the graphs in this example?

3. For each of the directed graphs below, find the associated incidence matrix

Directed Incidence Matrix Table						
	u_1	u_2	u_3	u_4		
e_1						
e_2						
e_3						
e_4						
e_5						