
Chapter 3

Matrices and Matrix Operations

3.1 Matrices and Matrix Modeling
Matrices are used to model phenomenon requiring multiple dimensional data.

Applications areas exist in almost every branch of physics including classical me-
chanics, statics, dynamics, electromagnetism, optics, and quantum mechanics. We
also use matrices in computer graphics to create 2D and 3D models. In this sec-
tion, we focus on some of the most accessible matrix modeling techniques. These
will help us build intuition on how to construct matrices in later sections when we
increase the complexity of our models.

Definition 3.1: Entry-by-entry definition of an m ◊ n matrix

Let m, n œ N. An m ◊ n matrix A is a rectangular array of real numbers
with m rows and n columns. We can write the general structure of an
m ◊ n matrix A as:

A =

S

WWWU

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

T

XXXV

Each of the numbers in this array is called an entry, element or coef-
ficient of the matrix. Each entry has a row and column index, which
identifies where in the matrix that coe�cient is stored.

Notice from our definition above, that all vectors are matrices but not all ma-
trices are vectors.

Definition 3.2: Dimensions of a Matrix

The size of a matrix A is given in the form m◊n, where m is the number
of rows and n gives the number of columns of the matrix. We call m,
the number listed to the left of the ◊ symbol, the row dimension of the
matrix. On the other hand, we call n, the number listed to the right of
the ◊ symbol, the column dimension of the matrix.

103

DRAFT



EXAMPLE 3.1.1
An undirected graph G consists of two finite sets N and E . The set N includes
a list of objects known as nodes or vertices. The set E contains a list of undi-
rected edges. Each edge specifies connectivity relationships between vertices of
our graph as a subset of N . Let’s create an undirected graph with four nodes and
six undirected edges given by

N = {u1, u2, u3, u4} and E =
Ó

{u1, u2}, {u1, u3}, {u1, u4}, {u2, u3}, {u2, u4}, {u3, u4}
Ô

.

We assume each element of E is listed once for each intended edge on the graph.
To enumerate the edges, set the first listed element of E to be e1 = {u1, u2} and
define the second listed element as e2 = {u1, u3}. Continue until the end of the list
of edges, concluding with e6 = {u3, u4}.

The vertices uj and uk associated with edge ei = {uj , uk} are known as the end
vertices of edge ei. For example, the end vertices of edge e3 = {u1, u4} are nodes
u1 and u4. In this definition, we do not di�erentiate between the listed order for the
end vertices. In particular, e3 = {u1, u4} = {u4, u1}, with no distinction between
which node is at the “start” of this edge and which node is at the “end” of the
edge. Because each edge determines only connectivity between nodes and does not
specify a direction for the connection, we call set G = (N , E) an undirected graph.

A very convenient way to represent the set-theoretic definition of undirected
graphs is to use a graph diagram. To do so, we represent the vertices of the
graph as dots and draw each edge as a line segment connecting its end vertices. For
the graph defined in this example, our corresponding graph diagram is given below.

•u1 •u2

•
u3

•u4

e1

e2

e3

e4

e5

e6

We can use this diagram to create an undirected incidence matrix A œ R6◊4

that models the connectivity between vertices. In this case, matrix A has six rows
and four columns. Row i of our matrix corresponds to edge i while column k of
our matrix corresponds to vertex k for i = 1, 2, 3, 4, 5, 6 and k = 1, 2, 3, 4. The
entry-by-entry definition of A is given by

aik =
;

1 if edge ei touches node nk,

0 otherwise.

To create this undirected incidence matrix, we set up the table which we use to
read of the entries of the incidence matrix.

c• Je�rey A. Anderson 104 vS20190403

DRAFT



Undirected Incidence
Matrix Table
u1 u2 u3 u4

e1 1 1 0 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 1 1 0
e5 0 1 0 1
e6 0 0 1 1

A =

S

WWWWWWU

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

T

XXXXXXV

This matrix A fully encodes all relevant aspects of our undirected graph includ-
ing the number of vertices, the number of edges, and the interconnection between
each vertex. Also implicit in this matrix definition is our desired enumeration
scheme where row one of the matrix corresponds to edge one of the graph. We
will study techniques to ascertain many useful properties about a given undirected
graph by analyzing the corresponding incidence matrix.

Undirected graphs are very useful when analyzing problems involving general
connectivity between distinct objects. If we notice that such a problem does not
depend on assigning a direction to component interconnects, we can us undirected
graphs as a tool to encode system-wide connectivity. However, there are a number
of modeling contexts in which we may want to assign a direction to each edge. For
this purpose, we can create directed graphs.

EXAMPLE 3.1.2
A directed graph consists of two sets N and E . The set N contains a finite
number of objects, known as vertices or nodes. The set E contains a finite list of
directed edges. Each directed edge is an ordered pair in N ◊ N . Let’s create a
directed graph with four vertices and five edges given by

N = {u1, u2, u3, u4} and E = {(u1, u4), (u2, u1), (u2, u3), (u4, u3), (u4, u2)}.

Again, we assume each element of E is listed once for each intended edge on our
graph. We enumerate our edges by assigning indices in the order in which the
edges are listed. In this case, we have e1 = (1, 4), e2 = (2, 1) all the way through
e5 = (4, 2).

If ei = (uj , uk) œ E , we conclude that edge i is incident out of vertex uj and
incident into vertex uk. In this case, we call uj the initial vertex of edge ei

and while uk is the terminal vertex of this edge. For example, we see that edge
e4 = (u4, u3) has initial vertex u4 and terminal vertex u4.

Just like with undirected graphs, we can visualize the connectivity between
nodes of a directed graph using a graph diagram.

•
u1

•
u2

•u3•u4

e1

e2

e3

e4

e5

To draw a directed edge, we draw an arrow pointing out of the initial node and
pointing into the terminal node. We can then construct a directed incidence matrix

vS20190403 105 c• Je�rey A. Anderson

DRAFT



to model the connectivity of the vertices. The individual coe�cients of the incidence
matrix A are given by

aik =

Y
]

[

1 if edge ei leaves node uk,

≠1 if edge ei enters node uk,

0 otherwise .

We let the rows of this matrix represent the edges and the columns represent the
nodes of our digraph. For this directed graph with 5 edges and 4 nodes, we create
the a table which we use to read of the individual entries of our 5 ◊ 4 incidence
matrix.

Directed Incidence
Matrix Table
u1 u2 u3 u4

e1 1 0 0 -1
e2 -1 1 0 0
e3 0 1 -1 0
e4 0 0 -1 1
e5 0 -1 0 1

A =

S

WWWWU

1 0 0 ≠1
≠1 1 0 0

0 1 ≠1 0
0 0 ≠1 1
0 ≠1 0 1

T

XXXXV

For an incidence matrix A œ Rm◊n corresponding to a digraph G = {N , E},
the row dimension m represents the number of edges of the graph and the column
dimension n represents the number of nodes existing between these nodes. Notice
that for both undirected and directed graphs, we do not specify any coordinate
system for the vertices of our graph. These modeling tools focus only on connectivity
between objects and do not require specific locations for each node. There are a
number of applications in which we might want to specify locations for each node
in addition to connectivity between node. An example of one such application area
is in 2D and 3D computer graphics.

EXAMPLE 3.1.3
One of the subfields of computer science is that of 2D computer graphics. This
branch focuses on generating computer-based models for two dimensional shapes
which can be very useful in drawing and printing applications as well as 2D annima-
tion. Vector models can be particularly e�ective to encoding 2D geometric shapes.
We begin our discussion of 2D computer graphics by focusing on wireframe mod-
els. We create a wireframe model by specifying a vertex matrix and edge table.
The vertex matrix encodes the coordinates of each vertex in our model and the edge
table dictates the connectivity between the vertices.

In this example, let’s create a triangle using a wireframe model. We begin by
looking back at Example 2.1.1. In that case, we had three vertices, which we labeled:

v1 =
5
0
0

6
, v2 =

5
≠1

1

6
, v3 =

5
2
1

6
.

We can encode this information in a Vertex Table.

2D Wireframe Vertex Table
Vertex 1 Vertex 2 Vertex 3

1st Coordinate 0 ≠1 2
2nd Coordinate 0 1 1

x

y

v1
•

v2 • v3•

We can also indicate the edges (connections) between vertices using an Edge Table.

c• Je�rey A. Anderson 106 vS20190403

DRAFT



2D Wireframe Edge Table
Edge Start Vertex End Vertex

1 1 2
2 2 3
3 3 1

Notice that we specify the start and end vertices for each edge separately. In this
case, we do not care about creating directed edges. Thus the corresponding visual
representation of our triangle contains lines connecting each vertex (thought of as
“wires”). If we wanted to, we could use arrows that run from the starting vertex
toward the end vertex, known as a directed edge. However, this is unnecessary for
this model. Also notice that the model has no “area” since the shape contains only
vertices and edges. This is why we call this a “frame” since it only specifies the
outer region of the shape. It is up to us to fill in this shape if we so desire.

From this model, we can generate a vertex matrix

V =
5
0 ≠1 2
0 1 1

6

As we will see, we can then apply a variety of geometric transformations on this
triangle using matrix-matrix multiplication on this matrix V . As long as the edge
configurations don’t change, we can keep the edge table untouched while executing
any geometric transformation.

EXAMPLE 3.1.4
In our example above, we discussed wireframe models used in 2D computer graphics.
However, sometimes we might like the ability to create interesting 3D computer
graphics. We can generalize our 2D wireframe model to create a 3D wireframe
model that encodes three dimensional data. Let’s begin by creating a pyramid with
a square base using the same wireframe model structure. In this case, we need 5
vertices, which we will label:

v1 =

S

U
0
0
0

T

V , v2 =

S

U
2
0
0

T

V , v3 =

S

U
2
2
0

T

V , v4 =

S

U
0
2
0

T

V , v5 =

S

U
1
1
2

T

V .

We can visualize this pyramid as follows:

vS20190403 107 c• Je�rey A. Anderson

DRAFT



In this figure, the vertices of the pyramid are labeled according to our specified
vector indices vi for i = 1, 2, ..., 5. The edges are drawn in black as lines. Now, let’s
create our Vertex Table for this pyramid:

3D Wireframe Vertex Table
Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5

1st Coordinate 0 2 2 0 1
2nd Coordinate 0 0 2 2 1
3rd Coordinate 0 0 0 0 2

Just as before, we need to indicate which vertices are connected by specifying our
corresponding Edge Table:

3D Wireframe Edge Table
Edge Start Vertex End Vertex

1 1 2
2 2 3
3 3 4
4 3 1
5 4 1
6 1 5
7 2 5
8 3 5
9 4 5

Each edge is a single, undirected line in three space that connects the start vertex
to the end vertex. Strictly speaking, the wireframe model we’ve created above
does not contain information about polygon faces. In fact, this model encodes only
the vertices and edges. Again, we can think of this as an empty frame in three
dimensions which no connections between the edges (except at the vertices).

For now, let’s generate the vertex matrix V corresponding to our pyramid:

V =

S

U
0 2 2 0 1
0 0 2 2 1
0 0 0 0 2

T

V

As we will see, we can use matrix-matrix multiplication to perform a range of
geometric operations on these vertices.

EXAMPLE 3.1.5
In addition to creating wireframe models for shapes in three dimensions, it is often
very helpful to create 3D computer graphics made up of polygons with vertices
and faces. Let’s generalize our 3D wireframe model to be a 3D polygon model
that includes a description of faces (rather than edges). Such models are known
as polygon meshes. In this case, we discuss the so-called Face-Vertex mesh model.
Again we start with our square-based pyramid from the example above with vertex
matrix

V =

S

U
0 2 2 0 1
0 0 2 2 1
0 0 0 0 2

T

V

This time, we visualize our pyramid as follows:

c• Je�rey A. Anderson 108 vS20190403

DRAFT



In this figure, the vertices of the pyramid are labeled according to our initial model.
The faces of the pyramid are drawn in blue. The edges are drawn in black lines.
This time, instead of creating Edge Table we will create a Face List:

3D Polygon Face Table
Face 1st vertex 2nd Vertex 3rd Vertex

1 1 2 4
2 2 3 4
3 1 2 5
4 2 3 5
5 3 4 5
6 4 1 5

This model creates all faces using two-dimensional triangles that are created by
connecting a set of three vertices. There are many advantages to using the face-
vertex model (to see more about this, search the wikipedia article on “Polygon
Mesh”). As we will see, we can use matrix-matrix multiplication to perform a
range of geometric operations on these vertices.

EXAMPLE 3.1.6
Let’s take a look at some much more sophisticated graphics that can be created
using polygon meshes. First, let’s look at two di�erent 3D models of a Lamborghini
Gallardo (one convertible and one hard top):

The convertible model contains 312,411 vertices. This data file was created by
jarred1997 and is available at www.thingiverse.com/thing:125339. Let’s also look

vS20190403 109 c• Je�rey A. Anderson

DRAFT



at two di�erent models of the so-called Stanford Bunny (one very fine model and
one course model):

The detailed Stanford bunny can be found at http://www.thingiverse.com/thing:287082.
The simple Stanford bunny is available at www.thingiverse.com/thing:466857.

Entries of a matrix
The fundamental building block of all real matrices is the individual entry. Each

entry, also referred to as an element, of a matrix is composed of three unique pieces
of information including

i. a row index i œ {1, 2, ..., m}

ii. a column index k œ {1, 2, ..., n}

iii. a real number given by aik œ R

When specifying the individual entries of a matrix, we must identify all three of
these pieces of information. Using subscript notation, the row index always appears
first and the column index always appears second.

Definition 3.3: Entry Operator

Let A œ Rm◊n. Define the map

Entry
ik

(A) = aik = A(i, k)

for i, k œ N with 1 Æ i Æ m and 1 Æ k Æ n.

The entry operator takes in a row index, column index and matrix to produce the
real number stored in position (i, k) of our given matrix.

c• Je�rey A. Anderson 110 vS20190403

DRAFT



EXAMPLE 3.1.7
If A œ R6◊6, then the value of the element with row index 5 and column index 3 is

Entry53(A) = a53

This is equivalent to viewing the full matrix and picking out the element in the fifth
row and third column

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

S

WWWWWWWWWWWU

T

XXXXXXXXXXXV

EXAMPLE 3.1.8
We can create a model for digital images that utilizes matrices. To begin our model
construction, we will define a continuous physical image as a function f(x, y) where
f : D æ R. In this case, we can write the domain of input points as

D = {(x, y) : x¸ Æ x Æ xr and y¸ Æ x Æ yr} ™ R2
.

Each point (x, y) represents a spatial coordinate in the frame of our picture. The
real-valued output f(x, y) is the amplitude of the light at each point (x, y). The
amplitude of light at any point indicates the intensity (or brightness) of the image
at that point. In the case of our continuous physical image, we consider the domain
space D that defines our frame to be continuous and we allow for the amplitude
function to take an infinite range of values in R.

In order to convert a continuous image f(x, y) into a corresponding digital image
f(x,y), we must digitize the image. This process requires two steps: sampling and
quantization. When we sample our continuous image, we convert the input domain
D into a set of finite, discrete values. Next, to quantize our image, we digitize the
amplitudes by assigning finite, discrete values to captured amplitudes.

The result of sampling and quantization is a matrix of real numbers A that
stores the digital image. In this case, we assume that the continuous image f(x, y)
is sampled so that the resulting digital image has m rows and n columns. We say
that the digital image matrix A is of size m ◊ n. Again, we emphasize that the
values of the coordinates (x,y) are discrete quantities. For notational convenience
and clarity, we will use integer values for the discrete coordinate values. In our 1 2 3 · · · n

1 · · · · ·
2 · · · · ·
3 · · · · ·
... · · · · ·
m · · · · ·

convention, we define the origin of the digital image to be at the point (x,y) =
(1, 1). The next coordinate along the first row is (x,y) = (1, 2) which signified the
second sampled point in the first row.

For any coordinate (x,y), the first element x refers to the row number of the
captured data and the second coordinate y refers to the column number. We notice
that x will range from 1 to m and y will range from 1 to n. Notice that in this
model, the coordinate pair (x,y) does not necessarily correspond to the continuous
spacial coordinates (x, y). The spacial coordinates (x, y) are used to signify the
physical location of any point in our frame while the sampled digital coordinates
(x,y) encode the location of the data point within our digital image.

vS20190403 111 c• Je�rey A. Anderson

DRAFT



In this case, the point (r, c) is known as a pixel coordinate. The coordinate
system we discussed above leads to the following representation of our digital image
function:

A =

S

WWWU

f(1,1) f(1,2) · · · f(1,n)
f(2,1) f(2,2) · · · f(2,n)

...
...

. . .
...

f(m,1) f(m,2) · · · f(m,n)

T

XXXV

The notation f(r,c) represents the quantized amplitude value located in row r
and column c. See Section 5.9.2: The camera and the image plane on page 237 of
Coding the Matrix by Philip N. Klein

EXAMPLE 3.1.9
Let’s create a digital image using a 7 ◊ 21 with a total of 147 pixels. Our digital
image will be broken up into 7 rows of pixels down our image and 21 columns of
pixels across. We use a 3-bit gray scale encoding to store the individual pixel values.
This means each pixel stores a binary number representing an integer value in the
set N3 = {0, 1, 2, ..., 7}. These encodings correspond to the spectrum of shades of
gray displayed in the diagram below.

Our digital image is a diagram of the word “LOVE” with all upper case letters. To
create a digital image of this word, we store our image in the following matrix.

S

WWWWWU

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 7 7 0 0 0 5 5 5 0 3 0 0 0 3 0 3 3 3 3 0
0 7 7 0 0 0 5 5 5 0 3 3 0 3 3 0 3 3 0 0 0
0 7 7 0 0 0 5 0 5 0 0 3 3 3 0 0 3 3 3 3 0
0 7 7 7 7 0 5 5 5 0 0 3 3 3 0 0 3 3 0 0 0
0 7 7 7 7 0 5 5 5 0 0 0 3 0 0 0 3 3 3 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T

XXXXXV

Now, we can visualize our image as follows:

c• Je�rey A. Anderson 112 vS20190403

DRAFT



Notice that zero entries in our digital image correspond to black pixels (no light)
while entries with a value of 7 correspond to white pixels. This is yet another
demonstration of the power of discretization in approximating continuous behavior.

vS20190403 113 c• Je�rey A. Anderson

DRAFT



Definition 3.4: Equal Matrices

Two matrices are defined to be equal if they have the same dimensions
and if entries with the same row and column index have the same numer-
ical value.

EXAMPLE 3.1.10
Consider the undirected graphs defined in the following diagram.

•u1

•
u2

•
u3

•u4

e1

e2

e3
e4

e5

•u2 •u3

•
u1

•
u4

e1

e2

e3
e4

e5

The corresponding incidence matrices for each of these graphs are equal. The
fact that these incidence matrices are equal indicates that the connectivity between
the nodes of each graph are identical. This is a powerful observation: graphs model
the connectivity between nodes in a system. Graphs are not used to encode the
exact location of each node within a specific coordinate system. In other words,
graphs are useful models to encode connectivity but not particularly useful to encode
specific location.

EXAMPLE 3.1.11
Consider the directed graphs defined in the following diagram.

•
u3

•
u4

•u1

•
u2

e1
e2 e3

e4 e5

e6
•
u3

•
u4

•u1

•
u2

e1
e2 e3

e4 e5

e6

The corresponding incidence matrices for each of these graphs are NOT equal.

Any time we are looking to compare two matrices to see if these matrices are
equal, the first thing we need to do is to check the dimensions.

c• Je�rey A. Anderson 114 vS20190403

DRAFT



Matrix Modeling- Suggested Problems

For all the problems below, be sure to explicitly state the dimensions of the matrices
you use for each model.

1. Create the incidence matrix A associated with the following directed graphs:

i. .

•u1 •u2 •u3

•
u4

•
u5

•
u6

e1

e2
e3

e4

e5
e6

e7

e8e9

ii. .

•
u1

•u2 •u3

•
u4

•
u5

•
u6

•u7 •u8

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10 e11

e12

A. Write out matrix A in full and specify its dimensions
B. Take the dot product between row 1 and 5 of matrix A. What do these

vectors tell you about the graph?
C. Take the dot product between columns 2 and 4 of matrix A. What do

these vectors indicate about the graph?

*Author’s Note: For future iterations of this problem, create a library of
graphs associated with “real-world” problems. Ideally, these will be connected
to other application examples in this book.

vS20190403 115 c• Je�rey A. Anderson

DRAFT



2. Create a wireframe model for the letter A given in the figure to the below.

A. Specify the vertex table and edge table
B. Write the vertex matrix V from the vertex table
C. Create any polygon of your choosing and encode as a wireframe model.

c• Je�rey A. Anderson 116 vS20190403

DRAFT


