
2.5 Linear Combinations and Linear Independence

Definition 2.12: Linear Combination of Vectors

Let m, n œ N. Let a1, a2, ..., an œ Rm and suppose x1, x2, ..., xn œ R. A
linear combination of vectors a1, a2, ..., an is a vector b œ Rm written
in the form

b = x1 a1 + x2 a2 + · · · + xn an =
nÿ

k=1
xk ak.

A linear combination of vectors a1, a2, ..., an œ Rm is a sum of n vectors, each of size
m ◊ 1. The kth summand is defined as the output of a scalar-vector multiplication
problem, where we’ve multiplied the kth vector ak by the kth scaling coe�cient xk,
for k = 1, 2, ..., n. Thus, a linear combination of the set of vectors a1, a2, ..., an œ Rm

is a single vector in b œ Rm that results from n scalar-vector multiplication and
n ≠ 1 vector additions.

EXAMPLE 2.5.1
Computer monitors are electronic devices used to display digital data on personal
computers. Each computer display is an array of individual pixels. These arrays
have two dimensions including width and height. The pixel width dimension of
a computer monitor is the number of pixels along the width of the display. The
pixel height dimension is the number of pixels along the height of the monitor. For
example, below we illustrate a model of a computer monitor with a width of 10
pixels and a height of 10 pixels.

In this model, we have numbered each pixel from 1 to 100. This numbering
system is known as a bitmap and is used to assign a set of bits in the computers
memory system to store color data for each individual pixel on the display. In order
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to display color on the screen at each pixel value, your computer’s operating system
scans the bits stored for each pixel and colors the pixel based on the stored value
in each set of bits. The exact color produced for each individual pixel depends on
the color model that your computer uses to store color data.

One common color map used to store color in individual pixels is known as the
RGB color model. In this model, individual pixel colors are created by summing
red, green and blue color intensities together. Suppose we store each pixel as a 3◊1
vector xk œ R3 given by

xk =

S

U
x1k

x2k

x3k

T

V

where the index 1 Æ k Æ 100 represents the pixel number as defined by our bitmap.
In this example, we assume each pixel has a 4≠bit color depth. In other words,

the individual coe�cients xik of each vector are stored as a 4≠bit binary integer
in the computer memory, for i = 1, 2, 3. Because 4≠bit binary numbers can range
between 0 Æ xik Æ 15, for i = 1, 2, 3, each color component in an individual pixel
has a total of 16 di�erent intensities as illustrated below.

The final color displayed by each pixel is the sum of the three individual red, green,
and blue colors added together.

With this model in mind, we can think of any color displayed on a computer
monitor using an RGB color model as a linear combination of the vectors

a1 =

S

U
1
0
0

T

V, a2 =

S

U
0
1
0

T

V, a3 =

S

U
0
0
1

T

V.

To color the kth pixel on our monitor, we choose appropriate scaling coe�cients
x1k, x2k, x3k and consider the linear combination. Let’s create the color orange
using the linear combination

S

U
15
7
0

T

V = 15 ·

S

U
1
0
0

T

V + 7 ·

S

U
0
1
0

T

V + 0 ·

S

U
0
0
1

T

V.

Notice that each pixel’s color intensity is encoded as a linear combination of the
colors red, green, and blue.
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EXAMPLE 2.5.2
Suppose we want to model the relationship between the Celsius and Fahrenheit
temperature scales. We know that the Celsius scale measures 0¶C for the freezing
temperature of water and 100¶C for the boiling point of water. On the other hand,
the Fahrenheit scale runs from 32¶F for the freezing point and 212¶F for the boiling
point of water. We can create a conversion between these two scales using the
following formula

f(c) = 32 + 1.8 · c

where c is a given temperature measured in degrees Celsius and f(c) is the corre-
sponding temperature in degrees Fahrenheit. Using this model, we can convert a
number of Celsius measurements to Fahrenheit measurements simultaneously using
linear combinations in the form

S

WWU

f(c1)
f(c2)
f(c3)
f(c4)

T

XXV = 32

S

WWU

1
1
1
1

T

XXV + 1.8

S

WWU

0
10
20
30

T

XXV =

S

WWU

32
50
68
86

T

XXV

The Fahrenheit vector is a linear combination of two other related vectors.

EXAMPLE 2.5.3
Let’s recall our model for the electrical behavior of a flashlight from Example ??.
Below we draw the associated idea circuit model:

≠
+vv iv

•
u1 r1

+ vr1 ≠

ir1

•
u2

r2

≠
vr2

+
ir2

•
u3r3

≠ vr3 +

ir3

•ug

For this circuit, we can find the voltages across each ideal circuit element by cal-
culating the di�erence between the voltage potentials at the terminal ends of each
element. As a linear combination of vectors, this takes the form:

S

WWU

v1
v2
v3
vs

T

XXV =

S

WWU

u1 ≠ u2
≠u2 + u3
u3 ≠ ug

u1 ≠ ug

T

XXV = u1

S

WWU

1
0
0
1

T

XXV + u2

S

WWU

≠1
≠1

0
0

T

XXV + u3

S

WWU

0
1
1
0

T

XXV + ug

S

WWU

0
0

≠1
≠1

T

XXV
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EXAMPLE 2.5.4
Stephen Curry plays for the Golden State Warriors as a professional basket ball
player in the National Basketball Association (NBA). Suppose we analyze Curry’s
shooting technique. Below we see a diagram that highlights the typical trajectory
of one of Mr. Curry’s free-throw shots.

From our study of introductory physics, we choose to model the trajectory of
the basket ball using the function

h(x) = a0 + a1 · x + a2 · x
2
.

Suppose the coe�cient values of this polynomial are given by

a0 = 7.2500, a1 = 1.5610, a2 = ≠0.0975

Then, we can find the set of points in the output given by
S

U
h1
h2
h3

T

V = 7.2500 ·

S

U
1
1
1

T

V + 1.5610 ·

S

U
0
8
14

T

V + ≠0.0975 ·

S

U
0
64
196

T

V =

S

U
7.250

13.498
9.994

T

V
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Definition 2.13: Span of a set of vectors

Let m, n œ N and suppose a1, a2, ..., an œ Rm. The span of the set
of vectors {ak}n

k=1 is the set of all possible linear combinations of these
vectors, denoted as

Span{a1, a2, ..., an} =
I

nÿ

k=1
xk ak : xk œ R for k = 1, 2, ..., n

J
.

We denote the span of vectors a1, a2, ..., an using angle brackets:

Èa1, a2, ..., anÍ = Span{ak}n

k=1.

EXAMPLE 2.5.5
Suppose we are given the vector

x =
5
2
1

6

from Example 2.2.3. Then, the span of this vector is the set

ÈxÍ = {– x : – œ R} =
;5

2–

1–

6
: – œ R

<

This is the line given by y = 0.5 x having a slope of 0.5 and y-intercept (0, 0). We
graph this span below as the red line.

Notice this corresponds with our interpretation of scalar-vector multiplication as a
scaling of the vector value.
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EXAMPLE 2.5.6
Let’s consider the RGB color model we discussed above. Suppose we consider

Èa1, a3Í = Span

Y
]

[

S

U
1
0
0

T

V,

S

U
0
0
1

T

V

Z
^

\ =

Y
]

[

S

U
x1
0
x3

T

V where x1, x3 œ {0, 1, 2, ..., 15}

Z
^

\ .

This is the set of all colors that can be made by combining red and blue together.

Notice that no greens will appear on this spectrum because the green vector does
not contribute to the span. Formally speaking, this set is not actually a span.
In particular, we define the span to be the set of all possible linear combinations
where the scaling coe�cients can be any real number. In this example, the scaling
coe�cients are integers greater than or equal to 0 and less than or equal to 15.
In this case, we are representing the discrete approximation of the span of these
vectors in a computer that has a 4-bit rgb color scheme.
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EXAMPLE 2.5.7
Suppose that we have the two vectors

a1 =

S

U
≠1

1
1

T

V , a2 =

S

U
≠1
≠1

1

T

V

Let’s create the span of these vectors

Èa1, a2Í =

Y
]

[x1 ·

S

U
1
1
1

T

V + x2 ·

S

U
1

≠1
1

T

V : x1, x2 œ R

Z
^

\

We can think of this as the plane in R3 through the origin. In the diagram below,
we graph the span as the light blue plane. Further, we superimpose our two vectors
onto the plane. The vector a1 is graphed in red and the vector a2 is graphed in
blue.

Every point in the light blue plane can be written as a linear combinations of our
vectors a1 and a2. For example, notice from our figure above, that the “y-axis” lies
on our plane. We verify this easily since

S

U
0
1
0

T

V = 1
2 ·

S

U
≠1

1
1

T

V + ≠1
2 ·

S

U
≠1
≠1

1

T

V
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Definition 2.14: Linearly Dependent Vectors

Let m, n œ N. Suppose a1, a2, ..., an œ Rm. We say that the set of vectors
{ak}n

k=1 is linearly dependent if and only one of the vectors can be
written as a linear combination of the other vectors. In other words, the
set {ak}n

k=1 is linearly dependent if there exists a j œ N with 1 Æ j Æ n

and

aj =
nÿ

k=1
k ”=j

xk ak

for some choice x1, x2, ..., xj≠1, xj+1, ..., xn œ R.

EXAMPLE 2.5.8
Let’s consider the vertex vectors

v1 =
5
0
0

6
, v2 =

5
≠1

1

6
, v3 =

5
2
1

6
.

from Example 2.1.1. This set of vectors is linearly dependent because

v1 = 0 · v2 + 0 · v3

In other words, we can write v1 as a linear combination of v2 and v3. Indeed, any
set of vectors that includes the zero vector will always be linearly dependent.

EXAMPLE 2.5.9
The set of vectors

a1 =
5

1
≠3

6
, a2 =

5
≠3

9

6
, a3 =

5
4
9

6
.

is linearly dependent. We see this immediately from the fact that

a1 = ≠3 · a2

Theorem 13

Any list of n vectors of size m ◊ 1 with n > m is linearly dependent.

In a linearly dependent set of vector, at least one vector can be created from the
other vectors in the set via linear combination. As we will see, the concept of linear
dependence is intimately connected to the study of the range of the matrix-vector
multiplication problem. Given a set of vectors a1, a2, ...an œ Rm, we can take the
span of that set. If we define a matrix A with m rows and n columns, given by

A =
#
a1 a2 · · · an

$

then the span of these vectors is the range of the matrix vector multiplication
problem. We say that a set of vectors is linearly dependent if we can delete one of
the columns of our vector and produce the same range from the reduced matrix.
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EXAMPLE 2.5.10
The set of vectors

a1 =

S

WWU

1
1
0
1

T

XXV , a2 =

S

WWU

4
0
0
4

T

XXV , a3 =

S

WWU

0
4

≠1
1

T

XXV , a4 =

S

WWU

3
≠13

4
1

T

XXV .

is linearly dependent. To see this, consider the equation

x1

S

WWU

1
1
0
1

T

XXV + x2

S

WWU

4
0
0
4

T

XXV + x3

S

WWU

0
4

≠1
1

T

XXV =

S

WWU

3
≠13

4
1

T

XXV

We can use the sparsity structure of each vector to see that

a4 = 3 · a1 + 0 · a2 ≠ 4 · a3

Theorem 14: Test for Linear Dependence

Let m, n œ N. Suppose that a1, a2, ..., an œ Rm. These vectors are linearly
dependent if there exists scalars x1, x2, ..., xn that are not all zero such
that

x1a1 + x2a2 + · · · + xnan = 0.

c• Je�rey A. Anderson 98 vS20190403

DRAFT



Definition 2.15: Linearly Independent Vectors

Let m, n œ N. Suppose that a1, a2, ..., an œ Rm and x1, x2, ..., xn œ R.
The set {ak}n

k=1 of vectors is linearly independent if it is NOT linearly
independent.

EXAMPLE 2.5.11
Consider the vectors

a1 =

S

U
1
0
0

T

V, a2 =

S

U
0
1
0

T

V, a3 =

S

U
0
0
1

T

V.

from Example 2.5.1. These vectors are linearly independent since we cannot write
one of the vectors as a linear combination as the other two. Intuitively, when
we state these vectors are linearly independent, we are creating a mathematical
formalization of the realization that we cannot combine red and blue to make green.

A linearly independent set of vectors has the property that no vector from the
set can be written as a linear combination of the other vectors in the set. Intuitively,
we can think of linearly independent sets of vectors as collections of vectors each
of which encodes information not found in the other elements in the set. In other
words, each vector has information unique to itself when compared with the other
vectors in the set.

Theorem 15: Test for Linear Independence

Let m, n œ N. Suppose that a1, a2, ..., an œ Rm. These vectors are linearly
independent if and only if

x1a1 + x2a2 + · · · + xnan = 0

is true only when xk = 0 for all k = 1, 2, ..., n.
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Lesson 6: Vectors and Modeling- Suggested Problems:

For all the problems below, be sure to explicitly state the dimensions of the
vectors you use for each model.

1. Consider the circuits below:

Circuit I:

≠
+

Circuit II:

≠
+

≠
+

≠ +

A. Identify each node and label the node potentials. Create a vector u to
store the node voltage potentials.

B. Label all voltage and current reference directions.
C. Introduce vectors v, i for all voltage and current variables in this circuit.
D. Specifically identify the significance of each entry in these vectors.
E. Show how to calculate the voltage drop across each element as the dif-

ference between node voltage potentials. Write the voltage drop calcu-
lations for the entire system as a linear combination of vectors.

F. Write Kircho�’s current law (KCL) at each node. Write the KCL equa-
tions for the entire system as a linear combination of vectors.
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2. Determine whether or not the vector b =

S

U
2

≠2
≠4

T

V can be written as a linear

combination of the vectors

a1 =

S

U
1
1
0

T

V and a2 =

S

U
0
1
1

T

V .

A. If you can write b as a linear combination of a1, a2, then specifically
identify the scalars x1, x2 œ R such that x1 · a1 + x2 · a2 = b.

B. If cannot write b as a linear combination of a1, a2, explain how you know
this.

3. Which of the following sets of vectors are linearly independent?
5

1
≠1

6
A.

5
0
0

6
B.

5
1

≠2

6
,

5
3
1

6
C.

5
8

≠12

6
,

5
≠2

3

6
D.

5
1

≠1

6
,

5
1
1

6
,

5
4
1

6
E.

5
0
0

6
,

5
1
1

6
,

5
2
2

6
F.

4. Which of the following sets of vectors span R
2?

5
1

≠1

6
A.

5
0
0

6
B.

5
1

≠2

6
,

5
3
1

6
C.

5
8

≠12

6
,

5
≠2

3

6
D.

5
1

≠1

6
,

5
1
1

6
,

5
4
1

6
E.

5
0
0

6
,

5
1
1

6
,

5
2
2

6
F.
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