Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	If $\mathbf{x} \in \mathbb{R}^n$, then the inner product of \mathbf{x} with itself is given by $\mathbf{x} \cdot \mathbf{x} = \ \mathbf{x}\ _2^2$
2.	Т	F	$\sqrt{\mathbf{x}\cdot\mathbf{x}} = \ \mathbf{x}\ _2$
3.	Т	F	If $f(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$, then the codomain of f is \mathbb{R} .
4.	Т	F	Suppose $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i$
5.	Т	F	$\mathbf{x} \cdot \mathbf{x} = \ \mathbf{x}\ _2^2$
6.	Т	F	$\mathbf{x}\cdot\mathbf{x} = \ \mathbf{x}\ _2$
7.	Т	F	$\ \mathbf{x}\ _2 \ \mathbf{y}\ _2 = \mathbf{x} \cdot \mathbf{y} \cos(\theta)$ where θ is the angle between \mathbf{x} and \mathbf{y} .
8.	Т	F	If $f(\mathbf{x}) = \mathbf{x} _2$, then $\operatorname{Rng}(f) = (0, \infty) \subseteq \mathbb{R}$.
9.	Т	F	$\mathbf{x} \cdot \mathbf{y} = \ \mathbf{x}\ _2 \ \mathbf{y}\ _2 \cos(\theta)$ where θ is the angle between \mathbf{x} and \mathbf{y} .

Multiple Choice For the problems below, circle the correct response for each question.

1. Let $E = {\mathbf{e}_j}_{j=1}^4$ be the standard basis for \mathbb{R}^4 :

$$\mathbf{e}_{1} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \quad \mathbf{e}_{2} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad \mathbf{e}_{3} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \quad \mathbf{e}_{4} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}.$$

Define the vector ${\bf x}$ by taking a linear combination of elements of E below

 $\mathbf{x} = 2\,\mathbf{e}_1 - 5\,\mathbf{e}_2 - 3\,\mathbf{e}_3 + 4\,\mathbf{e}_4.$

Which of the following gives the value of the dot product $(\mathbf{e}_4 - \mathbf{e}_2) \cdot \mathbf{x}$:

- A. 9 B. -9. C. -2 D. 1 E. -1
- 2. Consider the following two column vectors

$$\mathbf{x} = \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}, \qquad \qquad \mathbf{y} = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}$$

Find the angle θ between these vectors:

A.
$$-\frac{1}{2}$$
 B. π C. $\frac{2\pi}{3}$ D. $\frac{\pi}{3}$ E. $\frac{5\pi}{6}$

3. Define vectors

$$\mathbf{x} = \begin{bmatrix} t \\ -4 \\ 2 \\ t \end{bmatrix}, \qquad \qquad \mathbf{y} = \begin{bmatrix} -t \\ t \\ 5 \\ 1 \end{bmatrix}$$

Find <u>all</u> values of scalar t so that the inner product $\mathbf{x}\cdot\mathbf{y}=0$

A.
$$t = -2$$
 B. $t = 5$ and $t = -2$ C. $t = 5$ and $t = 2$ D. $t = -5$ and $t = 2$ E. $t = 5$

Free Response

- 1. State and prove each of the following the pythagorean theorem
- 2. State and prove the Law of Cosines (BOTH acute and obtuse case)
- 3. State and prove the cosine formula for the inner product. Using the cosine formula for the inner product, discuss when two vectors are orthogonal "perpendicular" to each other.
- 4. (Optional, Extra Credit, Challenge Problem) Let $\mathbf{x} \in \mathbb{R}^n$ be a column vector. Recall that we defined the 2-norm of \mathbf{x} to be

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

We can create a different norm, called the ∞ -norm (read "infinity norm"), using the following definition

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

which takes the maximum value of the absolute values of all entries of \mathbf{x} . Using these definitions, prove

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n} \cdot \|\mathbf{x}\|_{\infty}$$

5. (Optional, Extra Credit, Challenge Problem)

Let $\mathbf{x} \in \mathbb{R}^n$ be a column vector. Recall that we defined the 2-norm of \mathbf{x} to be

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

This is one example of a much larger class of vector norms, known as p-norms. To create a p-norm, we choose a real number $p \ge 1$ and set

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Using this definition, we can set $p = \infty$ and define the ∞ -norm (read "infinity norm"), using the following definition

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Prove $\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_\infty$