
2.3 Inner Products

Definition 2.9: Inner Product between Vectors

Let n œ N and suppose that x, y œ Rn. Then, the inner product between
x and y is given by

x · y = x1y1 + x2y2 + · · · + xnyn =
nÿ

j=1
xjyj .

Notice that the dot product is a function with domain Rn ◊ Rn and codomain
R. The output of the dot product between any two vectors is a real number.

EXAMPLE 2.3.1
Recall our vector model for storing your performance on all graded assessments in
Math 2B from Example 2.1.2. In this model, we stored our individual performance
data in the following 4 ◊ 1 vector

g =

S

WWWWWWWWWWWWU

q

300
e1

100
e2

100

f

100

T

XXXXXXXXXXXXV

where

q = the total number of points you earn on your warm up quizzes
e1 = your final score on exam 1
e2 = your final score on exam 2
f = your score on your final exam

In order to calculate our final grade using vector g we need to know the grade-
category weights assigned to each grade category. In Math 2B, these weights were
given in the course syllabus as follows:

I. Warm-Up Quizzes: 10%

II. In-class exam 1: 25%

III. In-class exam 2: 25%

IV. Final Exam: 40%

Let’s store these category weights in decimal form using a 4 ◊ 1 vector

c =

S

WWU

0.10
0.25
0.25
0.40

T

XXV
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With this in mind, we can calculate our final grade percent score (in decimal form)
using the following dot product:

ps = g · c = 0.10 q

300 + 0.25 e1
100 + 0.25 e2

100 + 0.40 f

100

where pf is the final percent score you earn in Math 2B and is used to calculate
your final grade based on the grade scale included in the course syllabus.

EXAMPLE 2.3.2
Let’s suppose that we want to use Riemann integration to find the exact integral
of f(x) = cos(x) on the interval [0, 2fi]. By our study of integral calculus, we know
we can evaluate this integral analytically using the definition

b⁄

a

f(x) dx = lim
næŒ

nÿ

i=1
f(xi) h

where

h = b ≠ a

n
, and xi = a + i · h

Because the cosine function has a closed-form antiderivative (namely sin(x)), we
can find our area exactly.

However, for a very wide class of problems, this theoretic definition is not en-
tirely helpful. For any function whose antiderivative cannot be written in terms of
elementary functions (e.g. e

≠x
2), integral calculus does not give us a closed form

solution for the integral.
We can instead attempt to numerically approximate the definite integral using

Riemann sums. For example, we can choose an approximation scheme in which we
discretize our domain space into n equally spaced intervals and sample our function
at the discrete endpoints of each interval, just as in Example 2.1.4. If we desire
high accuracy, we can use a very fine discretization (which requires more time and
energy to compute by the technician).

In this example, we let’s discretize our interval [0, 2fi] at n = 20 points. The
associated Riemann sum approximation to our integral can be visualized as follows:
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In this case, we’ve used the left-hand rule height of each rectangle touches the
graph on the left-hand side. As we recall, there are other methods we can use
to approximate definite integrals. Recall from Integral Calculus that a general
approach to numerical approximation proceeds as follows:

b⁄

a

f(x) dx ¥
nÿ

i=1
f(xú

i
) h

where x
ú
i

œ [xi≠1, xi] is any point in the ith subinterval and step size h = b ≠ a

n
is

uniform for each interval.
Notice that our approximation scheme can be written as the dot product

nÿ

i=1
f(xú

i
) h = f · h

where we’ve create two vectors of dimensions n ◊ 1:

f =

S

WWWU

f(xú
1)

f(xú
2)

...
f(xú

n
)

T

XXXV
, and h = h

S

WWWU

1
1
...
1

T

XXXV

The choice of the points x
ú
i

œ [xi≠1, xi] depended on the situation. The three most
rudimentary techniques included:

Left-Hand Rule: xiú = xi≠1

Right-Hand Rule: xiú = xi

Midpoint Rule: xiú = xi≠1 + xi

2

In this application, we have again used the process of discretization to trans-
form a problem involving limits into a discrete problem which can be calculated
using a finite sum. In this case, we replace integrals with finite sums accomplished
by dot products. To improve our approximation, we force the distance between
each samples point in the domain to tend toward zero, thus constructing a ideal
theoretical tool for evaluating area under the curve.
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Theorem 7: Algebraic Properties: Dot Product of Vectors

Let x, y, z œ Rn◊1 and a, b œ R. Then, all of the following are algebraic
properties of the dot product:

i. Bilinearity:

a. Linearity in left argument: (ax + by) · z = a(x · z) + b(y · z)
b. Linearity in right argument: x · (ay + bz) = a(x · y) + b(x · z)

ii. Symmetry: x · y = y · x

iii. Positivity: x · x > 0 when x ”= 0 while 0 · 0 = 0.

Below, we will prove part (i) subpart (a) of Theorem 8. The other proofs are
left to the reader as an exercise.

Proof. Let n œ N. Suppose a, b œ R x, y, z œ Rn. Denote the coe�cients of our
vectors as follows:

x =

S

WWWU

x1
x2
...

xn

T

XXXV
, y =

S

WWWU

y1
y2
...

yn

T

XXXV
, z =

S

WWWU

z1
z2
...

zn

T

XXXV
.

Now consider:

(ax + by) · z =

S

WWWU

ax1 + by1
ax2 + by2

...
axn + byn

T

XXXV
·

S

WWWU

z1
z2
...

zn

T

XXXV

=
nÿ

j=1
(axj + byj)zj

= a

nÿ

j=1
xjzj + b

nÿ

j=1
yjzj

= a x · z + b y · z.

This is exactly what was to be shown.

The algebraic properties of the inner product come in very handy when we
construct solutions to our four fundamental problems in linear algebra. For example,
bilinearity of the inner product guarantees that we can interpret matrix-matrix
multiplication in many ways. The triangle inequality provides deep intuition in
order to construct solutions to the least-square problem.

c• Je�rey A. Anderson 78 vS20190403

DRAFT



Lesson 5: Inner Products- Suggested Problems:

1. Derive the Cosine Formula for the Inner Product: Prove Theorems 10, 11,
and 12 for yourself (using these notes):

2. Prove Theorem 13: The Cauchy-Schwartz Inequality

3. Use the inner product operation to approximate the area:

fi/2⁄

≠fi/2

cos(x)dx

.

a. In your approximation scheme, use various values of n

b. find the exact solution to this problem using Integral Calculus
c. How fine of a discretization due you need to use to get within 0.1 of the

exact answer?

4. Set up an inner product model for your final grade calculation in each class
you are currently enrolled in. Write this somewhere very special and refer
back to it throughout the quarter.

5. Calculate your GPA using our inner product model. Check to see if Foothill’s
calculation match your calculations.
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2.4 Vector Norms

Definition 2.10: The 2-norm of a vector

Let n œ N be a positive integer and let x œ Rn. Then the 2-norm x œ Rn

is given by

ÎxÎ2 =
Ò

x
2
1 + x

2
2 + · · · + x2

n
=

ı̂ıÙ
nÿ

j=1
x

2
j
.

We can calculate the 2≠norm of a vector using the associated inner prod-
uct formula ÎxÎ2 =

Ô
x · x.

Remark: Some texts refer to the two-norm as the euclidean norm. From this
point forward, let us denote

ÎxÎ = ÎxÎ2.

In general, there are many other vector norms we can consider. However, because
the 2≠norm is by far the most powerful from the standpoint of introductory linear
algebra, we will focus our attention here.

Using this definition, we can prove a number of interesting facts about the two-
norm of a vector, as listed below.

Theorem 8: Algebraic Properties: The 2≠Norm of a Vector

Let x, y œ Rn◊1 and a œ R. Then, all of the following are algebraic
properties of the euclidean norm:

i. Positivity: ÎxÎ Ø 0 with ÎxÎ = 0 if and only if x = 0.

ii. Homogeneity: ÎaxÎ = |a| · ÎxÎ

iii. Triangle Inequality: Îx + yÎ Æ ÎxÎ + ÎyÎ

Proof. Let x, y œ Rn and suppose a œ R. Let’s begin with positivity. Consider

ÎxÎ Ø 0

For any y œ R, recall that if y Ø 0, then Ô
y Ø 0. This remains true for y =

x
2
1+x

2
2+· · ·+x

2
n
. In other words, if we can prove that ÎxÎ2 = x

2
1+x

2
2+· · ·+x

2
n

Ø 0 for
all choices of x, we can conclude that ÎxÎ Ø 0. However, by the positivity property
of the inner product, we know x · x Ø 0. Since ÎxÎ2 = x · x, we see immediately
that ÎxÎ2 Ø 0 and we have ÎxÎ Ø 0. This is what we wanted to show.

Let’s continue with the homogeneity property. To this end consider the scalar-
vector multiplication

ax = a

S

WWWU

x1
x2
...

xn

T

XXXV
=

S

WWWU

ax1
ax2

...
axn

T

XXXV
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With this in mind, we have

ÎaxÎ =


(ax1)2 + (ax2)2 + · · · + (axn)2

=
Ò

a2 · (x2
1 + x

2
2 + · · · + x2

n
)

=
Ô

a2 ·
Ò

x
2
1 + x

2
2 + · · · + x2

n

= |a| · ÎxÎ

This is exactly what we wanted to show.
Finally, we conclude by establishing the triangle inequality for the 2-norm. First,

let’s recall that the square root function f(t) =
Ô

t is increasing so that if t1 Æ t2,

then
Ô

t1 Æ
Ô

t2. If we can prove

t1 = Îx + yÎ2 Æ (ÎxÎ + ÎyÎ)2 = t2,

then we can conclude
Ô

t1 = Îx + yÎ Æ ÎxÎ + ÎyÎ =
Ô

t2, which is the triangle
inequality. Consider:

Îx + yÎ2 = (x + y) · (x + y)

= x · (x + y) + y · (x + y)

= x · x + x · y + y · x + y · y

= ÎxÎ2 + 2x · y + ÎyÎ2

= ÎxÎ2 +
nÿ

i=1
2xiyi + ÎyÎ2

Æ ÎxÎ2 + 2ÎxÎ ÎyÎ + ÎyÎ2

= (ÎxÎ + ÎyÎ)2

Notice, the proof above depends heavily on the algebraic properties of the inner
product and the inner product formula for the 2≠norm. Also, the second to last
expression requires that we know that

nq
i=1

xi yi Æ ÎxÎ ÎyÎ. This is the famous

Cauchy-Schwarz Inequality and follows from the cosine formula for the inner prod-
uct that we discuss below.

In addition to these algebraic statements, we can also greatly benefit from the
study of a geometric property of the inner product. In our discussion of geometry,
we will need a few background results including the pythagorean theorem and the
law of cosines.
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Theorem 9: Pythagorean Theorem

Let a, b, c be positive real numbers representing the length of the base,
height and hypotenuse, respectively, of a right triangle. Then a

2+b
2 = c

2
.

Proof. Let’s begin by visualizing our right triangle and labeling the length of side
as indicated in the theorem statement. Further, let’s introduce variables ◊ and „

to represent the two acute angles of our triangle as detailed below:

a

b
c

◊

„

We know the sum of all three interior angles of our triangle add to 180¶ = 90¶+◊+„.

Using four copies of this triangle, let’s construct a special quadrilateral.

a

b
c

a

b

c

a

b
c

a

b

c

Because we know that ◊ + „ = 90¶, we can immediately conclude that the
quadrilateral defined by the hypotenuses forms a square with area c

2. Moreover,
the total area of the square is given by

(a + b)2 = a
2 + 2a b + b

2
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If we take away each of the four triangles and leave only the center square then we
know

c
2 = (a + b)2 ≠ 4

3
1
2ab

4

= a
2 + 2ab + b

2 ≠ 4
2ab

= a
2 + b

2

We conclude that a
2 + b

2 = c
2 as was to be shown.

Theorem 10: Law of Cosines

Let a, b, c be positive real numbers representing the length of the three
sides of any triangle. Let ◊ be the angle opposite the side of length c and
between the sides of length a and b. Then

c
2 = a

2 + b
2 ≠ 2a b cos(◊)

Proof. Let’s break the theorem statement into two cases:
Case I: The Acute Case

1
0 < ◊ <

fi

2

2

b c

x a ≠ x

h

◊

In this case we have x
2 + h

2 = b
2. Further we see

c
2 = (a ≠ x)2 + h

2

= a
2 ≠ 2ax + x

2 + h
2

= a
2 ≠ 2ax + b

2

Since x = b cos(◊) by the definition of cosine as the ratio of the adjacent angle over
the length of the hypotenuse, we see

c
2 = a

2 + b
2 ≠ 2ab cos(◊)

which is what we wanted to show.

Case II: The Obtuse Case
1

fi

2 < ◊ < fi

2

Below we draw the relevant image for Case II.
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a

b

c

x

h

◊ fi ≠ ◊

In this case, we know that x
2 + h

2 = b
2 and x = b cos(fi ≠ ◊). Further, by the

pythagorean theorem proved above, we know that

c
2 = (a + x)2 + h

2

= a
2 + 2ax + x

2 + h
2

= a
2 + b

2 + 2ax

We can rewrite our equation x = b cos(fi ≠ ◊) = ≠b cos(◊) since the function cos(x)
has a period of 2fi. Then we conclude

c
2 = (a + x)2 + h

2

= a
2 + 2ax + x

2 + h
2

= a
2 + b

2 ≠ 2ab cos(◊)

This is exactly what we wanted to prove for Case I.

This is a generalization of the pythagorean theorem for any triangle. In the case
of the pythagorean theorem, we have that ◊ = 90¶
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Theorem 11: Cosine Formula for Inner Product

Let n œ N be a positive integer and let x, y œ Rn. Then the dot product
satisfies

x · y = ÎxÎ ÎyÎ cos(◊)

where ◊ is defined to be the angle between vectors x and y.

Proof. Case I: Assume x and y are not scalar multiples of each other. Suppose we
begin with two vectors x, y œ Rn. Consider the triangle defined by these vectors.
The length of each side of this triangle can be given by the 2≠norm of the vectors:

ÎyÎ

ÎxÎ Îx ≠ yÎ

◊

By the Law of Cosines, we know

Îx ≠ yÎ2 = ÎxÎ2 + ÎyÎ2 ≠ 2 ÎxÎ ÎyÎ cos(◊)

Recall, using the algebraic properties of the inner product, we can write

Îx ≠ yÎ2 = (x ≠ y) · (x ≠ y)

= x · (x ≠ y) ≠ y · (x ≠ y)

= x · x ≠ x · y ≠ y · x + y · y

= ÎxÎ2 ≠ 2 x · y + ÎyÎ2

With this we see

ÎxÎ2 + ÎyÎ2 ≠ 2 ÎxÎ ÎyÎ cos(◊) = ÎxÎ2 ≠ 2x · y + ÎyÎ2

By canceling out the appropriate terms using our knowledge of arithmetic, we see

x · y = ÎxÎ ÎyÎ cos(◊).

Case II: Assume x and y are scalar multiples of each other (i.e. y = ax). In this
case we know that the angle between our vectors is either ◊ = 0 or ◊ = fi. If ◊ = 0,
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then a > 0 and cos(◊) = 1. On the other hand if ◊ = fi, then a < 0 and cos(◊) = ≠1.
In either case, we see

x · y = x · (a y)

= a x · x

= aÎxÎ2

= aÎxÎ ÎxÎ

Recall that the sign function f(x) = sgn(x) is a piecewise function defined as follows:

sgn(x) =

Y
]

[

1 if x > 0,

0 if x = 0,

≠1 if x < 0.

Then, for any scalar a œ R, we can write a = sgn(a) |a|. Moreover, since |a| =
Ô

a2,
we see

x · y = sign(a)
Ô

a2
ı̂ıÙ

nÿ

i=1
x

2
i

ÎxÎ2

= sign(a)
ı̂ıÙ

nÿ

i=1
(axi)2 ÎxÎ2

= sign(a) ÎyÎ2 ÎxÎ2

= cos(◊) ÎyÎ2 ÎxÎ2

Thus we see that the cosine formula for the inner product holds

The cosine formula for the inner product is a powerful tool which will show up
repeatedly in many contexts. Notice that the closer the vectors x and y are to
parallel (the closer ◊ is to zero), the closer the dot product resembles the norm of
the two vectors. In contrast, if ◊ ¥ fi

2 , the dot product is close to zero.
Using this interpretation, we can think of the inner product between vectors

as giving a measurement of “parallelity. The larger the magnitude of the inner
product between two vectors, the more parallel these vectors are while the smaller
the magnitude, the less parallel. Of course, the magnitudes of each vector come
into play here, as indicated in the cosine formula.

Orthogonality plays a major role in applied linear algebra and will be the theme
of many techniques we develop to solve least-squares problems and linear systems
problems. The cosine formula for the dot product gives us a powerful tool to enforce
orthogonality between two vectors by guaranteeing that the inner product of two
non-zero vector is zero if and only if the vectors are orthogonal.

c• Je�rey A. Anderson 86 vS20190403

DRAFT



Now, we can use the law of cosines to make a statement about the relationship
between the lengths of general n ◊ 1 vectors x, y and x ≠ y. We can also use the
algebraic properties of the dot product to establish the dot product cosine formula
stated above.

Theorem 12: Cauchy-Schwartz Inequality

Let n œ N be a positive integer and let x, y œ Rn. Then,

|x · y| Æ ÎxÎ ÎyÎ

Proof. Let x, y œ Rn. Then, by the cosine formula for the inner product, we know

x · y = ÎxÎ ÎyÎ cos(◊)

We also know that ≠1 Æ cos(◊) Æ 1 for all ◊, meaning

≠ÎxÎ ÎyÎ Æ x · y Æ ÎxÎ ÎyÎ

Taking the absolute value of the inner expression implies our desired relation.

Recall that we used the Cauchy-Schwartz Inequality in our verification of the
triangle inequality of the 2≠norm.
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Definition 2.11: Orthogonal vectors

Two vectors are orthogonal if and only if the dot product between these
vectors is zero.

EXAMPLE 2.4.1
Using two norms to calculate the similarities in voting records for the US Senate
votes.

EXAMPLE 2.4.2
Using inner products between vectors to project one vector onto another.
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Lesson 5: Inner Products- Suggested Problems:

1. Let x, y, z œ R4 be given by

w =
5
4
1

6
, x =

5
≠1

2

6
, y =

S

U
4

≠1
2

T

V , z =

S

U
≠2
≠4

3

T

V ,

Use these vectors to find each of the following:

w · x,
x · w
x · x , and x · w

w · wA. y · z,
z · y
y · y , and y · z

z · zB.

1
w · w w and 1

x · x xC. 1
y · y y and 1

z · z zD.

w · x
w · ww and y · z

z · z zE. ÎwÎ2, ÎxÎ2, ÎyÎ2, and ÎzÎ2,F.

2. Derive the Cosine Formula for the Inner Product: Prove Theorems 10, 11,
and 12 for yourself (using these notes):

3. Prove Theorem 13: The Cauchy-Schwartz Inequality

4. Use the inner product operation to approximate the area:

fi/2⁄

≠fi/2

cos(x)dx

.

a. In your approximation scheme, use various values of n

b. find the exact solution to this problem using Integral Calculus
c. How fine of a discretization due you need to use to get within 0.1 of the

exact answer?

5. Set up an inner product model for your final grade calculation in each class
you are currently enrolled in. Write this somewhere very special and refer
back to it throughout the quarter.

6. Calculate your GPA using our inner product model. Check to see if Foothill’s
calculation match your calculations.
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