Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	If $\mathbf{x} \in \mathbb{R}^n$ and $f(\mathbf{x}) = \mathbf{x}^T$, then $\text{Dom}(f) = \mathbb{R}^n$
2.	Т	F	If $f(\mathbf{x}, \mathbf{y}) = a\mathbf{x} + \mathbf{y}$, then the domain space of f is \mathbb{R}^n
3.	Т	F	A vector $\mathbf{x} \in \mathbb{R}^n$ and its additive inverse $-\mathbf{x} \in \mathbb{R}^n$ have equal lengths, as computed with the euclidean norm.
4.	Т	F	For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the distance between \mathbf{x} and \mathbf{y} is given by $\ \mathbf{x} - \mathbf{y}\ _2$.
5.	Т	F	If $f(\mathbf{x}) = \ \mathbf{x}\ _2$, then $\operatorname{Rng}(f) = (0, \infty) \subseteq \mathbb{R}$.
6.	Т	F	Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. If we add \mathbf{x} to the vector $\mathbf{y} - \mathbf{x}$ we get the vector \mathbf{y} .
7.	Т	F	The vectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} -4\\4 \end{bmatrix}$ represents points on a line that passes through the origin.
8.	Т	F	For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}^T + \mathbf{y}^T \in \mathbb{R}^n$
9.	Т	F	If \mathbf{u}, \mathbf{v} , and \mathbf{w} are non zero vectors in \mathbb{R}^2 , then $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$ for some $c_1, c_2 \in \mathbb{R}$.
10.	Т	F	For any scalar $c \in \mathbb{R}$ and any vector $\mathbf{x} \in \mathbb{R}^n$, we have $ c \mathbf{x} _2 = c \mathbf{x} _2$.
11.	Т	F	The "length" of any vector in a \mathbb{R}^n , measured by the euclidean norm, is always positive.
12.	Т	F	The vectors $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and $\begin{bmatrix} -4\\ 4 \end{bmatrix}$ represents points on a line that passes through the origin.
13.	Т	F	Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ for $n \in \mathbb{N}$. If $y = \frac{3}{2} \mathbf{x}_1$, then \mathbf{y} is a linear combination of \mathbf{x}_1 and \mathbf{x}_2

Multiple Choice For the problems below, circle the correct response for each question.

1. Recall that we used a spring in class modeled by the equation f(e) = ke + b where k = 17.57 N/m and b = 0.064N. Which of the following gives an ideal version of vector **e** (where entries are measured in m) if we hang masses encoded in the mass vector

$$\mathbf{m} = \begin{bmatrix} 0.00\\ 0.10\\ 0.20\\ 0.30\\ 0.40 \end{bmatrix}$$

In this case, assume elongation measurements are given in meters (m) and are rounded to 4 digits to the right of the decimal place. Each entry of **m** is measured in units of kilograms (kg). Remember the unit equation $1 \text{ N} = 1 \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$. Also, sssume the acceleration due to gravity is 9.8 m/s².

	[0.064]		[-0.0036]		[-0.0036]		[0.00]		0.064	
А.	1.821	В.	0.0521		0.0020		0.98		17.2826	
	3.578		0.1079	С.	0.0077	D.	1.96	Е.	34.5012	
	5.335		0.1637		0.0134		2.94		51.7198	
	7.092		0.2195		0.0191		3.92		68.9384	